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Preface

These are lecture notes for the course MA8403 taught at NTNU during the
spring semester of 2025 (but maybe it will one day become a book). Please note
that some parts of the document are currently in a pretty rough shape.

Sources

I make no claim of originality for any part of this text, except for the arrange-
ment of the material. On the other hand, the contents have often been so sub-
stantially reorganized that it has not been possible to assign credit for most of
the results as they appear. To partially make up for this, I will try to list some
sources that have been particularly influential:

▶ Unsurprisingly, Lurie’s book [Lur09], where much of the theory of ∞-
categories was first developed, has influenced many parts of the text, but
especially the later Chapters 9 and 10 on filtered colimits and accessible and
presentable ∞-categories.

▶ Much of Chapter 2 is based on Martini’s paper [Mar21] on the Yoneda
lemma for internal∞-categories, which in turn was heavily influenced by
Cisinski’s book [Cis19]. The same is true for the later discussions of left and
right fibrations and cofinality.

▶ The approach to adjunctions via free fibrations in Section 6.3 is taken from
the book of Riehl and Verity [RV22].

▶ The proof of the adjoint functor theorem in Section 10.2 is a combina-
tion of the proof from [Lur09] (which seems to contain a gap) and that of
Nguyen, Raptis and Schrade in [NRS20].

▶ The proof that filtered colimits commute with finite limits in∞-groupoids
in Sections 9.8–9.9 is taken from the note [SW25] by Sattler and Wärn.

▶ Parts of Chapter 1 are based on my expository article on higher categories
[Hau24].
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That said, some parts of these notes are in a sense the outcome of more than a
decade of trying to understand∞-categories, and I have likely forgotten where
I first learned about many of the ideas it contains — I would appreciate any
suggestions of additional sources that should be acknowledged!
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Chapter 1

Introduction

(This introduction is currently quite rough and in particular omits any discus-
sion of the history of higher categories; for the moment, the reader is referred
to [Hau24] for some more context and references to the literature.)

1.1 What are higher categories?

Many mathematical objects have an associated notion of morphism, and so nat-
urally organize themselves into categories. Basic examples include

▶ sets and functions,

▶ vector spaces and linear maps,

▶ groups and group homomorphisms.

In some cases there are also “morphisms between morphisms”, such as

▶ homotopies between continuous maps of topological spaces,

▶ chain homotopies between homomorphisms of chain complexes,

▶ natural transformations between functors among categories;

these structures give us higher categories. The basic concept is that of an 𝑛-
category, which should be a structure with

▶ objects1 (•),

▶ morphisms (or 1-morphisms) between objects (• → •),

▶ 2-morphisms between morphisms (with the same source and target), which
we can depict as:

• • ,
1It is sometimes convenient to think of objects as 0-morphisms.

8



▶ 3-morphisms between 2-morphisms, which we can depict as:

• • ,

▶ 4-morphisms between 3-morphisms, which we can depict as:

• • ,

and so on up to 𝑛-morphisms between (𝑛 − 1)-morphisms. We should be able
to compose 𝑖-morphisms for all 0 < 𝑖 ≤ 𝑛, and an 𝑖-morphism should have an
identity (𝑖 + 1)-morphism for 0 ≤ 𝑖 < 𝑛; the composition should give us for all
objects 𝑥,𝑦 in an 𝑛-category C an (𝑛 − 1)-category C(𝑥,𝑦) of morphisms from
𝑥 to 𝑦 with a composition functor

C(𝑥,𝑦) × C(𝑦, 𝑧) → C(𝑥, 𝑧)

for any triple of objects 𝑥,𝑦, 𝑧. In particular, a 0-category is just a set and a
1-category is an ordinary category.

Before we explain why it is not entirely straightforward to give a precise
definition of an 𝑛-category, let us mention a few structures that ought to give
examples of 𝑛-categories:

▶ Topological spaces with continuous maps, homotopies, homotopies of ho-
motopies, etc., up to 𝑛-dimensional homotopies, should give an example
of an (𝑛 + 1)-category for any 𝑛.

▶ Categories with functors and natural transformations should give a 2-category.

▶ More generally, 𝑛-categories should form an (𝑛 + 1)-category where the
𝑖-morphisms between C and D are functors C×𝐶𝑖 → D, with𝐶𝑖 being the
free 𝑛-category on a single 𝑖-morphism.

▶ Given a commutative ring 𝑅, we should have a Morita 2-category of 𝑅 where
the objects are associative 𝑅-algbras, the 1-morphisms from 𝐴 to 𝐵 are 𝐴-
𝐵-bimodules, and the 2-morphisms are bimodule homomorphisms.

If we ask for the composition of 𝑖-morphisms to be stricly associative, so that we
have identities ℎ(𝑔𝑓 ) = (ℎ𝑔) 𝑓 , we get the notion of strict 𝑛-categories. These are
easy to define, but turn out to not be very useful in practice.

To see why we should not expect associativity to hold strictly, let us first
point out that as 𝑛 increases we have an increasingly refined notion of when two
objects in an 𝑛-category are “the same” and when a morphism is “invertible”:
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▶ In a 0-category, i.e. a set, two objects 𝑥 and 𝑦 are the same if they are equal
(𝑥 = 𝑦).

▶ In a 1-category C, two objects 𝑥 and 𝑦 are the same if they are isomorphic
(𝑥 � 𝑦), i.e. there exist morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑥 such that
𝑔𝑓 = id𝑥 and 𝑓 𝑔 = id𝑦 in the sets C(𝑥, 𝑥) and C(𝑦,𝑦). Here we also say that
𝑓 and 𝑔 are invertible or are isomorphisms.

▶ In a 2-category C, two objects 𝑥 and 𝑦 are the same if they are equivalent
(𝑥 ≃ 𝑦), i.e. there exist morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑥 and isomor-
phisms 𝑔𝑓 � id𝑥 and 𝑓 𝑔 � id𝑦 in the categories C(𝑥, 𝑥) and C(𝑦,𝑦). Here we
also say that 𝑓 and 𝑔 are invertible or are equivalences.

▶ In general, in an 𝑛-category C, two objects 𝑥 and 𝑦 are the same if they
are equivalent (𝑥 ≃ 𝑦), i.e. there exist morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑥

and equivalences 𝑔𝑓 ≃ id𝑥 and 𝑓 𝑔 ≃ id𝑦 in the (𝑛 − 1)-categories C(𝑥, 𝑥) and
C(𝑦,𝑦). Here we again say that 𝑓 and 𝑔 are invertible or are equivalences.

A basic principle for ordinary categories is that we should never ask for two
objects to be equal, only to be isomorphic. Similarly, in an 𝑛-category it is “evil”
(or at least morally disreputable) to demand that two objects should be equal
rather than equivalent. (For example, we should never ask for two categories
to be isomorphic, we can only demand that they be equivalent.)

The strict associativity equation ℎ(𝑔𝑓 ) = (ℎ𝑔) 𝑓 for 𝑖-morphisms in an 𝑛-
category is asking for two objects in an (𝑛− 𝑖)-category to be equal. We should
therefore instead require a (specified) invertible (𝑖 + 1)-morphism ℎ(𝑔𝑓 ) ∼−→
(ℎ𝑔) 𝑓 . However, using such (𝑖 + 1)-morphisms there are two ways to relate
compositions of 4 morphisms:

(𝑘ℎ) (𝑔𝑓 )

𝑘 (ℎ(𝑔𝑓 )) ((𝑘ℎ)𝑔) 𝑓 .

𝑘 ((ℎ𝑔) 𝑓 ) (𝑘 (ℎ𝑔)) 𝑓

These two composites should again be “the same”, so we need an invertible
(𝑖 + 2)-morphism between them, which in turn calls for a coherence (𝑖 + 2)-
morphism relating different ways to go between compositions of 5 morphisms,
and so on. This is the idea of weak 𝑛-categories.

As should already be plausible, it is not easy to explicitly write down a def-
inition of weak 𝑛-categories, at least for 𝑛 > 2. On the other hand, strict 𝑛-
categories are simply not sufficient, as most real examples of 𝑛-categories are
not strict. For example, there should be a 2-category 𝐵(Vect, ⊗) with a sin-
gle object, where the morphisms are vector spaces, the 2-morphisms are linear
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maps, and the composition of 1-morphisms is given by taking tensor products.
For this to be a strict 2-category we would need to have equations

𝑈 ⊗ (𝑉 ⊗𝑊 ) = (𝑈 ⊗ 𝑉 ) ⊗𝑊,

for triple tensor products, which is simply not true — instead, we have a canon-
ical isomorphism between these vector spaces.

There are definitions of weak 𝑛-categories that package the coherence data
directly, but in practice these have turned out to not be very usable, at least for
𝑛 > 3. Let us also mention that every weak 2-category is equivalent to a strict
2-category, but this is false for 𝑛 > 2.

Instead of the “bottom-up” approach to 𝑛-categories we have sketched so
far, it turns out to be much easier to first use homotopy theory to develop a the-
ory of “(∞, 1)-categories”, and then use this to define other kinds of higher
categories.

Definition 1.1.1. An (𝑛, 𝑘)-category is an 𝑛-category where all 𝑖-morphisms are
invertible for 𝑖 > 𝑘.

For example, an (𝑛, 𝑛)-category is the same thing as an 𝑛-category, while
an (𝑛, 0)-category is an 𝑛-groupoid, i.e. an 𝑛-category where all 𝑖-morphisms
are invertible for all 𝑖.

At least informally, we can also allow 𝑛 = ∞ in this definition, so that we
have 𝑖-morphisms for all 𝑖 > 0.

Warning 1.1.2. In this text, and in much of the modern literature, the term∞-
category is an abbreviation for (∞, 1)-category. This conflicts with the conven-
tion that 𝑛-categories are (𝑛, 𝑛)-categories for finite 𝑛, but it is simply too cum-
bersome to keep writing out “(∞, 1)-category”.2 In any case (∞,∞)-categories
(or𝜔-categories), which have non-invertible 𝑖-morphisms for all 𝑖, will not show
up here.

1.2 The homotopy hypothesis

Informally, the basic idea for the homotopical approach to higher categories is
that ∞-groupoids should capture precisely the homotopy-invariant information
in topological spaces — this is the homotopy hypothesis of Grothendieck, which
we will introduce in this section. Given this, we can then build a theory of ∞-
categories on top of topological spaces (or some other model of their homotopy
theory, such as simplicial sets).

We first need to recall some basic definitions from homotopy theory:
2On the other hand, we will not be as lazy as some young people have become these days and

refer to ∞-categories as just “categories”.
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Definition 1.2.1. Suppose 𝑋 and 𝑌 are topological spaces, and 𝑓 , 𝑔 : 𝑋 → 𝑌 are
continuous maps. Then a homotopy from 𝑓 to𝑔 is a continuous mapℎ : 𝑋×𝐼 → 𝑌

(where 𝐼 is the closed interval [0, 1]) such that ℎ(–, 0) = 𝑓 and ℎ(–, 1) = 𝑔. If we
instead have pointed topological spaces (𝑋, 𝑥) and (𝑌,𝑦), with 𝑓 and 𝑔 pointed
maps, then we say that ℎ is a pointed homotopy if we also have ℎ(𝑥, –) = 𝑦. We
say that 𝑓 and 𝑔 are (pointed) homotopic if there exists a (pointed) homotopy
between them; this is an equivalence relation on (pointed) continuous maps.

Definition 1.2.2. For a pointed topological space (𝑋, 𝑥), we define the 𝑛th
homotopy group 𝜋𝑛 (𝑋, 𝑥) to be the set of pointed homotopy classes of maps
(𝑆𝑛, ∗) → (𝑋, 𝑥).

Here 𝜋1(𝑋, 𝑥) is the fundamental group of loops in 𝑋 based at 𝑥 , while for
𝑛 > 1 the homotopy group 𝜋𝑛 (𝑋, 𝑥) is an abelian group. We also take 𝜋0𝑋 to
be the (pointed) set of path components of 𝑋 .

Definition 1.2.3. Let 𝑋 be a topological space. The fundamental groupoid 𝜋≤1𝑋

of 𝑋 has as its objects the points of 𝑋 , and as its morphisms from 𝑥 to 𝑦 the
homotopy classes of paths 𝐼 → 𝑋 that start at 𝑥 and end at 𝑦 (for homotopies
that respect this condition). Composition is given by concatenation of paths
(which is well-defined up to homotopy), and the identity morphisms are the
constant paths; this makes 𝜋≤1𝑋 a category, which is indeed a groupoid since
paths can be reversed.

Note also that for a point 𝑥 ∈ 𝑋 , the set 𝜋≤1(𝑋 ) (𝑥, 𝑥) is nothing but the
fundamental group 𝜋1(𝑋, 𝑥), so that the fundamental groupoid contains the
information from 𝜋0𝑋 as well as the fundamental groups at all base points of 𝑋 .

The topological space 𝑋 should also have a fundamental 𝑛-groupoid 𝜋≤𝑛𝑋
where

▶ the objects are points of 𝑋 (∗ → 𝑋 ),

▶ the morphisms are paths in 𝑋 (𝐼 → 𝑋 ),

▶ the 2-morphisms are homotopies between paths (𝐼2 → 𝑋 ),

▶ . . .

▶ the𝑛-morphisms are equivalence classes of𝑛-dimensional homotopies 𝐼𝑛 →
𝑋 .

This should also make sense for 𝑛 = ∞, where we keep going forever (and never
take equivalence classes) giving the fundamental ∞-groupoid 𝜋≤∞𝑋 .

The Homotopy Hypothesis characterizes the information about 𝑋 that is
contained in 𝜋≤𝑛𝑋 . To explain this more precisely, we need to introduce some
more terminology:

▶ A continuous map 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if there exists a
continuous map 𝑔 : 𝑌 → 𝑋 and homotopies 𝑔𝑓 ≃ id𝑋 and 𝑓 𝑔 ≃ id𝑌 .
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▶ A continuous map 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if it induces
isomorphisms 𝜋0𝑋

∼−→ 𝜋0𝑌 and 𝜋𝑛 (𝑋, 𝑥) → 𝜋𝑛 (𝑌, 𝑓 (𝑥)) for all 𝑛 ≥ 1 and all
𝑥 ∈ 𝑋 .

▶ Two topological spaces have the same homotopy type if they are in the same
equivalence class under weak homotopy equivalence.

It is a theorem of Whitehead that a weak homotopy equivalence among CW-
complexes is actually a homotopy equivalence. Moreover, any topological space
is weakly homotopy equivalent to a CW-complex, so to study homotopy types
of topological spaces we can either consider all topological spaces up to weak
homotopy equivalence or CW-complexes up to homotopy equivalence.

Definition 1.2.4. A topological space 𝑋 is an 𝑛-type if all homotopy groups
𝜋𝑖 (𝑋, 𝑥) vanish for 𝑖 > 𝑛, for all 𝑥 ∈ 𝑋 .

Given a topological space 𝑋 we can construct an 𝑛-type 𝜏≤𝑛𝑋 by “killing”
the higher homotopy groups above level 𝑛 by attaching cells. We also get a map
𝑋 → 𝜏≤𝑛𝑋 that is an isomorphism on all homotopy groups in dimension ≤ 𝑛.
Moreover, the homotopy type of 𝜏≤𝑛𝑋 is determined by these properties, so we
call it the 𝑛-type of 𝑋 .

Conjecture 1.2.5 (Grothendieck’s Homotopy Hypothesis). There is an equiva-
lence between (weak) 𝑛-groupoids (up to equivalence) and 𝑛-types (up to weak homo-
topy equivalence), such that for a topological space𝑋 the fundamental 𝑛-groupoid 𝜋≤𝑛𝑋
corresponds to the 𝑛-type 𝜏≤𝑛𝑋 . For 𝑛 = ∞, the homotopy type of 𝑋 is determined by
𝜋≤∞𝑋 .

In low degrees, the Homotopy Hypothesis corresponds to classical results
in algebraic topology:

▶ 0-types are weakly homotopy equivalent to sets (with discrete topology),
and 0-groupoids are the same thing as sets.

▶ A connected 1-type is precisely an Eilenberg–MacLane space 𝐵𝐺 for a group
𝐺 . More precisely, group are equiavlent to both pointed connected 1-
types and pointed connected groupoids. This extends to an equivalence
(of (2, 1)-categories) between 1-types and groupoids.

▶ MacLane and Whitehead identified connected 2-types with crossed modules,
which are also equivalent to connected strict 2-groupoids. This correspon-
dence extends to one between general 2-types and 2-groupoids.

▶ It is also known that 3-types are equivalent to weak 3-groupoids.3

3This was first proved in the unpublished thesis of Leroy. See [Ber99] for a published proof
by Berger.
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The basic idea for the homotopical approach to higher categories is to take
the Homotopy Hypothesis as given (instead of a conjecture about a hypothetical
definition of weak 𝑛-groupoids), and simply define ∞-groupoids to be homo-
topy types. We can then build more complicated higher-categorical structures,
such as ∞-categories, on top of these. This leads to a version of higher cate-
gories where we can avoid dealing with coherence data for composition: in-
stead of first choosing specific composites and then supplying coherence data for
these, we rather specify a space of all choices of compositions and then require
this to be contractible. This has turned out to work much better than earlier
approaches, both for developing the general theory and for constructing and
working with specific examples of higher categories.

The simplest way to use homotopy theory to define a concrete notion of
∞-categories is to assume we can get away with one level of strictness (as turns
out to be true) and consider categories where the morphisms form topological
spaces:

Definition 1.2.6. A topological category (that is, a category enriched in topological
spaces) C has a set of objects, and for all objects 𝑥,𝑦 a topological space C(𝑥,𝑦) of
morphisms from 𝑥 to𝑦 with identities id𝑥 ∈ C(𝑥, 𝑥) and continuous composition
maps

C(𝑥,𝑦) × C(𝑦, 𝑧) → C(𝑥, 𝑧)

for all objects 𝑥,𝑦, 𝑧, which are (strictly) associative and unital.

While this is a correct definition, it has some important drawbacks. We will
introduce some better-behaved models of ∞-categories below, but before that
we will try to explain why∞-categories show up in several areas of mathemat-
ics.

1.3 Localizations and ∞-categories

In an abstract sense, homotopy theory is concerned with objects that we want
to consider up to some notion of equivalence that is weaker than isomorphism,
such as

▶ topological spaces up to (weak) homotopy equivalence,

▶ chain complexes up to quasi-isomorphism,

▶ categories up to equivalence.

A relative category (C,𝑊 ) consists of a category C with a collection𝑊 of mor-
phisms that we think of as “weak equivalences” (formally, we can think of𝑊 as a
(replete) wide subcategory of C, so that the weak equivalences are closed under
composition and contain all isomorphisms in C). Given a relative category, we
can always construct a localization 𝐿 : C→ C[𝑊 −1] such that composition with
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𝐿 identifies functors C[𝑊 −1] → D with functors C → D that take morphisms
in 𝑊 to isomorphisms in D. For example, topological spaces with weak ho-
motopy equivalences localizes to the homotopy category of topological spaces,
while chain complexes of 𝑅-modules with quasi-isomorphisms localizes to the
derived category of 𝑅.

We can define C[𝑊 −1] as a pushout of categories C⨿𝑊 𝑊gpd, where𝑊gpd is
the groupoid obtained by inverting all morphisms in the subcategory𝑊 , or a bit
more concretely as a category with the same objects as C and with morphisms
from 𝑥 to 𝑦 given by equivalence classes of zig-zags

𝑥 → • ← • → • ← · · · ← 𝑦,

where the backward maps lie in𝑊 . In general, we have very little control over
the localization C[𝑊 −1], but in many cases we can describe it more concretely
by first restricting to a class of “nice” objects and then quotienting the Hom-
sets from C by a “homotopy” relation. For example, the homotopy category
of spaces is described by CW-complexes and homotopy classes of continuous
maps among them, while the derived category of 𝑅 is given by taking chain
complexes of projective modules and chain homotopy classes of maps.

However, it turns out that these localizations lose important homotopy-
invariant information about objects of C. For example, in topological spaces we
can describe the 𝑛-sphere 𝑆𝑛 as the pushout 𝐷𝑛 ⨿𝑆𝑛−1 𝐷𝑛 where we glue two
𝑛-dimensional discs along their boundary 𝑆𝑛−1. On the other hand, ∗ ⨿𝑆𝑛−1 ∗
is a point, so pushouts of topological spaces are not homotopy-invariant. Nev-
ertheless, it is reasonable to think of 𝑆𝑛 as being the “homotopically correct”
pushout (or “homotopy pushout”) — but it is note the pushout in the homotopy
category (which does not exist). More generally, there exists a homotopical the-
ory of limits and colimits that we cannot see by just looking at the homotopy
category.

It turns out that we can fix this problem by instead extracting from our
relative category (C,𝑊 ) an ∞-category that universally inverts𝑊 , as this object
actually captures precisely the homotopy-invariant information from C. The
theory of ∞-categories then gives us a good language not just for working
with objects of C up to homotopy, but also with homotopy-coherent struc-
tures (such as diagrams or algebras) built from these. This is the reason that
∞-categories have become important in several areas of mathematics, includ-
ing algebraic topology, algebraic geometry, and representation theory, and in
general whenever we want to work with objects up to some weak notion of
equivalence.

1.4 Simplicial sets and topological spaces

The simplex category 𝚫 is the category of non-empty finite ordered sets

[𝑛] = {0 < 1 < · · · < 𝑛}, 𝑛 = 0, 1, . . .

15



A simplicial set is a presheaf 𝚫op → Set; we write SetΔ := Fun(𝚫op, Set) for the
category of simplicial sets.

Example 1.4.1. The 𝑛-simplex is the representable simplicial set

Δ𝑛 := Hom𝚫 (–, [𝑛]) .

The category 𝚫 is generated by

▶ the face maps 𝑑𝑖 : [𝑛 − 1] ↩→ [𝑛] that skip 𝑖 ∈ [𝑛]

▶ and the degeneracy maps 𝑠𝑖 : [𝑛 + 1] ↠ [𝑛] that repeat 𝑖 ∈ [𝑛],

subject to certain relations.

Definition 1.4.2. The topological 𝑛-simplex |Δ𝑛 | is the topological space

|Δ𝑛 | := {(𝑥0, . . . , 𝑥𝑛) ∈ R𝑛+1 :
∑︁

𝑥𝑖 = 1, 0 ≤ 𝑥𝑖 ≤ 1}

(with the subspace topology from R𝑛+1). For 𝜙 : [𝑛] → [𝑚] we can define a
continuous map 𝜙∗ : |Δ𝑛 | → |Δ𝑚 | by

𝜙∗(𝑥0, . . . , 𝑥𝑛)𝑖 =
∑︁

𝑗 :𝜙 ( 𝑗 )=𝑖
𝑥 𝑗 .

This gives a functor |Δ• | : 𝚫→ Top.

We can then define the singular simplicial set functor

Sing: Top→ SetΔ

as
Sing(𝑋 ) = HomTop( |Δ• |, 𝑋 ) .

This has a left adjoint |–| : SetΔ → Top, called the geometric realization functor,
which is the unique colimit-preserving functor that extends |Δ• | via the Yoneda
embedding. More concretely, we can define |𝑆 | for a simplicial set 𝑆 as the
quotient of ⨿𝑛𝑆𝑛 × |Δ𝑛 | where we identify (𝜎, 𝜙∗𝑝) with (𝜙∗𝜎, 𝑝) for 𝜙 : [𝑛] →
[𝑚], 𝜎 ∈ 𝑆𝑛 and 𝑝 ∈ |Δ𝑚 |. Informally, we build the topological space |𝑆 | out of
simplices according to the “blueprint” 𝑆 .

If we say that a morphism 𝑆 → 𝑇 in SetΔ is a weak equivalence if |𝑆 | → |𝑇 |
is a weak homotopy equivalence4, then the relative category consisting of SetΔ
with these weak equivalence describes the same homotopy theory as that of
topological spaces;5 for example, the counit map | Sing𝑋 | → 𝑋 for a topo-
logical space 𝑋 is always a weak homotopy equivalence. We can also describe
the weak equivalences of simplicial sets as homotopy equivalences (or describe
them via homotopy groups) if we restrict to a class of nice objects, which we
will introduce next.

4Or just a homotopy equivalence, as geometric realizations are always CW-complexes.
5More precisely, the adjunction |–| ⊣ Sing is a Quillen equivalence of model categories.
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Definition 1.4.3. The 𝑘th horn Λ𝑛
𝑘
⊆ Δ𝑛 is the subobject where we remove the

interior and the face opposite the 𝑘th vertex. More formally,

(Λ𝑛
𝑘
)𝑖 = {𝜎 : [𝑖] → [𝑛] : {0, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛} ⊄ im(𝜎)} .

Definition 1.4.4. A simplicial set 𝑆 is a Kan complex if any horn Λ𝑛
𝑘
→ 𝑆 can

be extended to a simplex Δ𝑛 → 𝑆 (not necessarily uniquely).

Example 1.4.5. Sing𝑋 is a Kan complex for any topological space 𝑋 (since
|Λ𝑛

𝑘
| → |Δ𝑛 | is a deformation retract).

Definition 1.4.6. A simplicial homotopy is a map 𝑆 × Δ1 → 𝑇 .

From simplicial homotopies we get an associated notion of homotopy equiv-
alence among simplicial sets.

Observation 1.4.7. SetΔ has an internal Hom 𝑆𝑇 for simplicial sets 𝑆 and 𝑇 ,
given by

(𝑆𝑇 )𝑛 = HomSetΔ (𝑇 × Δ𝑛, 𝑆).

Fact 1.4.8. If 𝑆 is a Kan complex, then so is 𝑆𝑇 for any simplicial set 𝑇 .

Definition 1.4.9. For a simplicial set 𝑆 , we define 𝜋0𝑆 to be the quotient of 𝑆0 by
the relation generated by identifying two 0-simplices if there exists a 1-simplex
that connects them.

Exercise 1.1. If 𝑆 is a Kan complex, then the relation defining 𝜋0𝑆 is an equivalence
relation.

Fact 1.4.10. For a morphism of simplicial sets 𝑓 : 𝑆 → 𝑇 , we have:

▶ 𝑓 is a weak equivalence if and only if for all Kan complexes 𝐾 , the induced map
𝜋0𝐾

𝑇 → 𝜋0𝐾
𝑆 is an isomorphism.

▶ If 𝑆 and 𝑇 are Kan complexes, then 𝑓 is a weak equivalence if and only if it is a
homotopy equivalence.

Moreover, every simplicial set 𝑆 is weakly equivalent to a Kan complex (for
example Sing |𝑆 |); it follows that the homotopy category of SetΔ can be de-
scribed by taking Kan complexes and homotopy classes of maps among them.
It can also be shown that weak equivalences among Kan complexes are detected
on homotopy groups.

1.5 Simplicial categories

Since we can replace topological spaces by simplicial sets as a model for the ho-
motopy theory of spaces or∞-groupoids, it is not surprising that we can model
∞-categories by simplicial categories, i.e. categories enriched in SetΔ, instead of
by topological categories as we mentioned earlier. We will write CatΔ for the
category of simplicial categories.
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Exercise 1.2. Show that CatΔ can be described as the full subcategory of Fun(𝚫op, Cat)
containing the functors whose simplical sets of objects are constant.

We can now define the right notion of weak equivalence for simplicial cat-
egories:

Definition 1.5.1. Given a simplicial category C, we can define a homotopy cat-
egory ℎC by taking the same objects as in C and setting ℎC(𝑥,𝑦) := 𝜋0C(𝑥,𝑦). A
functor of simplicial categories 𝐹 : C→ 𝑐𝐷 is a Dwyer–Kan equivalence if it is

▶ weakly fully faithful: C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦) is a weak equivalence of sim-
plicial sets for all 𝑥,𝑦 ∈ C;

▶ essentially surjective up to homotopy: ℎC→ ℎD is essentially surjective.

A key problem with simplicial categories as a model for∞-categories is that
it is hard to access the correct∞-groupoids or∞-categories of functors between
simplicial categories in this model. Other homotopy-invariant constructions
are also hard, for example given a functor 𝐹 : I → C where I is an ordinary
category and C is a simplicial category, and we’re given equivalences 𝐹 (𝑥) ∼−→
𝐺 (𝑥) in C for all 𝑥 ∈ I, we can’t necessarily replace 𝐹 by a functor that is given
on objects by 𝑥 ↦→ 𝐺 (𝑥).

This latter problem we can remedy by considering homotopy-coherent di-
agrams of shape I in C: instead of asking for 𝐹 to respect composition, given

𝑖
𝑓
−→ 𝑗

𝑔
−→ 𝑘 we ask for an edge in C(𝐹𝑖, 𝐹𝑘) between 𝐹 (𝑔)𝐹 (𝑓 ) and 𝐹 (𝑓 ), and

then given a third morphism ℎ : 𝑘 → ℓ we ask for 2-simplices

𝐹 (ℎ)𝐹 (𝑔)𝐹 (ℎ) 𝐹 (ℎ)𝐹 (𝑔𝑓 )

𝐹 (ℎ𝑔)𝐹 (𝑓 ) 𝐹 (ℎ𝑔𝑓 )

in C(𝑖, ℓ), and so on. We can then define a simplicial set of homotopy-coherent
diagrams, which turns out to give the correct ∞-groupoid of functors. We
want homotopy-coherent diagrams to be functors Icoh → C from a “coherent”
replacement of I; there is also a nice way to package this data using a “nerve”
functor, which we will introduce after considering a simpler version thereof.

Definition 1.5.2. We can view the ordered sets [𝑛] as categories; this gives a
(fully faithful) functor 𝚫 → Cat. The nerve functor 𝑁 : Cat → SetΔ is then
defined by

C ↦→ HomCat( [•],C),

so that
𝑁C𝑛 = {𝑥0

𝑓1−→ 𝑥1
𝑓2−→ · · ·

𝑓𝑛−→ 𝑥𝑛}.
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Thus 𝑁C𝑛 is the set of composable sequences of 𝑛 morphisms; in particular,
𝑁C0 is the set of all objects of C and 𝑁C1 is the set of all morphisms — the two
face maps [0] → [1] give the source and target of each morphism, and the
degeneracy map [1] → [0] gives the identity morphism of each object.

Exercise 1.3. Show that 𝑁 : Cat→ SetΔ is fully faithful.

Proposition 1.5.3. A simplicial set 𝑋 is in the image of 𝑁 if and only if either of the
following conditions holds:

(1) Every inner horn Λ𝑛
𝑘
→ 𝑋 (where 0 < 𝑘 < 𝑛) extends to a unique simplex

Δ𝑛 → 𝑋 .

(2) The Segal map 𝑋𝑛 → 𝑋1 ×𝑋0 · · · ×𝑋0 𝑋1, which is induced by the inclusions
[1] � {𝑖 − 1 < 𝑖} ↩→ [𝑛] and [0] � {𝑖} ↩→ [𝑛] , is an isomorphism for all 𝑛.

This is not particularly hard to prove, but we omit the details (for now).
Note that a map Λ2

1 → 𝑋 specifies two composable edges, and the unique ex-
tension to a 2-simplex says that these edges have a unique composite. On the
other hand a map Λ2

0 → 𝑋 specifies two edges with the same source, so in a cat-
egory we should not necessarily expect an extension to Δ2 (unless the category
is a groupoid).

Exercise 1.4. Show that fillers for horns of type Λ3
2 and Λ3

1 give associativity for the
composition of edges.

Both of the conditions in Proposition 1.5.3 can be weakened to produce good
models for ∞-categories. We will introduce these below, but first we return to
coherent diagrams and introduce the coherent nerve of simplicial categories:

Definition 1.5.4. We can explicitly describe a coherent replacement [𝑛]coh of
[𝑛]:

▶ the objects are 0, 1, . . . , 𝑛,

▶ the simplicial set of morphisms from 𝑖 to 𝑗 is ∅ if 𝑖 > 𝑗 , and otherwise it
is the nerve of the partially ordered set 𝑃𝑖 𝑗 of subsets of {𝑖, 𝑖 + 1, . . . , 𝑗} that
contain 𝑖 and 𝑗 , ordered by inclusion,

▶ composition if given by taking unions of subsets.

This gives a functor [•]coh : 𝚫→ CatΔ.

Example 1.5.5. In [2]coh we have (as posets)

[2]coh(0, 1) = {01}
[2]coh(1, 2) = {12}

[2]coh(0, 2) = {02 < 012},
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where 012 is the composite 12 ◦ 01. Similarly, in [3]coh the poset of maps from
0 to 3 is

03 013

023 0123.

Definition 1.5.6. The coherent nerve N : CatΔ → SetΔ is given by

C ↦→ HomCatΔ ( [•]coh,C) .

This has a left adjoint C that extends [•]coh.

We can then describe a homotopy-coherent diagram I → C as a map of
simplicial sets NI → NC where I and C are simplicial categories. (If I is an
ordinary category, we have NI = 𝑁 I.) This map indeed assigns a coherent
simplex in C to every string of composable morphisms in I; we can then define
the coherent replacement of I as Icoh := C(I).

A simplicial category C is fibrant if C(𝑥,𝑦) is a Kan complex for all objects
𝑥,𝑦. For C fibrant, the counit map CNC → C is always a Dwyer–Kan equiva-
lence. All told, the coherent nerve and its adjoint gives a relationship between
simplicial categories and simplicial sets that is very similar to the relation be-
tween topological spaces and simplicial sets we considered earlier. In fact, we
can again describe the homotopy theory of simplicial categories very nicely
using a particular class of simplicial sets.

1.6 Quasicategories

We now introduce the model for ∞-categories obtained by weaking the first
condition in Proposition 1.5.3:

Definition 1.6.1. A simplicial set𝑋 is a quasicategory if every inner horn Λ𝑛
𝑘
→ 𝑋

(0 < 𝑘 < 𝑛) admits an extension to Δ𝑛 (but this is not necessarily unique).

This condition on𝑋 says, for example, that given two composable 1-simplices,
which determine a map Λ2

1 → 𝑋 , we can compose them by choosing an exten-
sion to Δ2, but this composite is not unique. However, one can show that the
simplicial set of such composites forms a contractible Kan complex.

For C a fibrant simplicial category, NC is always a quasicategory. In fact, the
adjunction C ⊣ N exhibits the homotopy theory of quasicategories as equivalent
to that of simplicial categories, where we say that a morphism of simplicial
sets 𝑋 → 𝑌 is a categorical (weak) equivalence if C𝑋 → C𝑌 is a Dwyer–Kan
equivalence of simplicial categories.

Fact 1.6.2. A map of quasicategories is a categorical equivalence if and only if it is
“fully faithful and essentially surjective”, in an appropriate sense.
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Via Proposition 1.5.3 we can think of quasicategories as a common general-
ization of:

▶ Kan complexes (“∞-groupoids”), which have fillers for all horns,

▶ and (nerves of ) categories, which have unique fillers for inner horns.

In fact, the intersection of these conditions, where we demand unique fillers for
all horns, characterizes precisely the simplicial sets that are nerves of groupoids.

We have seen that quasicategories give a model for∞-categories where di-
agrams are automatically homotopy-coherent. This strongly suggests that they
are a better-behaved model than simplicial categories, and this is indeed the
case.

1.7 Segal spaces

We now turn to model for ∞-categories that we can obtain by weaking the
second condition in Proposition 1.5.3, which said that a simplicial set 𝑋 is iso-
morphic to the nerve of a category precisely when the Segal map

𝑋𝑛 → 𝑋1 ×𝑋0 · · · ×𝑋0 𝑋1

is an isomorphism for all 𝑛.
The idea is now to replace sets by∞-groupoids to get a similar description of

∞-categories. If we use simplicial set (Kan complexes) to model ∞-groupoids,
we also have to replace the strict pullbacks by homotopy pullbacks. We will not
go into this here, but one model for the homotopy pullback of maps 𝐴,𝐶 → 𝐵

is the strict pullback

𝐴 ×ℎ
𝐵
𝐶 𝐵Δ

1

𝐴 ×𝐶 𝐵 × 𝐵;

note that a point (0-simplex) in 𝐴 ×ℎ
𝐵
𝐶 then consists of a point in 𝐴, a point in

𝐶, and a path (1-simplex) between their images in 𝐵.
Informally, we then say that 𝑋• : 𝚫op → SetΔ is a Segal space6 if for all 𝑛, the

simplicial set 𝑋𝑛 is the homotopy pullback 𝑋1 ×ℎ𝑋0
· · · ×ℎ

𝑋0
𝑋1 via the Segal map.

Here we think of 𝑋0 as the ∞-groupoid of objects in an ∞-category and
𝑋1 as that of morphisms. The two face maps 𝑋1 ⇒ 𝑋0 assign the source and
target object to each morphism, while the degeneracy map 𝑋0 → 𝑋1 gives the
identity morphism for each object. We get a composition map as the composite

𝑋1 ×ℎ𝑋0
𝑋1

∼←− 𝑋2 → 𝑋1

6As is conventional, here we will sometimes use space as a synonym for simplicial set.
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after inverting the homotopy equivalence. The commutative square

𝑋3 𝑋2

𝑋2 𝑋1

𝑑2

𝑑1 𝑑1

𝑑1

gives associativity for this composition.
For an ordinary category C, we can view its nerve 𝑁C as a (discrete) Se-

gal space. If 𝐸1 is the “free isomorphism” with objects 0 and 1 and a unique
morphism 𝑖 → 𝑗 for all 𝑖, 𝑗 ∈ {0, 1}, a map 𝑁𝐸1 → 𝑋• then gives a coherent
equivalence in 𝑋

Definition 1.7.1. A Segal space is complete if 𝑋0 → Map(𝑁𝐸1, 𝑋 ) is a weak
equivalence.

This condition says that the simplicial set of objects of 𝑋 is the “correct”
one — the paths between objects in 𝑋0 give precisely the equivalences between
these objects in 𝑋•.

Complete Segal spaces are another good model of∞-categories. Moreover,
if 𝑋• is a Segal space, one can show that the simplicial set (𝑋•)0 of levelwise
0-simplices is a quasicategory. In fact, a key problem with quasicategories is
that it is usually not possible to directly write down a simplicial set and check
by hand that it has the inner horn fillers required to be a quasicategory — it is
often more feasible to prove that some simplicial space is a Segal space.

1.8 What we will actually do in this text

To develop the foundations of ∞-categories rigorously you have to start with
a model, such as quasicategories, and then develop analogues of basic concepts
from category theory using that model. Then you have prove that construc-
tions like homotopy (co)limits in model categories describe∞-categorical ver-
sions in the quasicategory you get by inverting the weak equivalences. As far
as ∞-categories themselves are concerned, this is essentially a “bootstrapping”
process, so that in the end you know that the external notions of, say, homo-
topy pullbacks you use to set up the theory of quasicategories agree with the
corresponding internal notion of pullbacks applied to the quasicategory of qua-
sicategories.

On the one hand, this process takes a lot of work (which could easily fill
a whole semester). However, on the other hand once it’s done you can es-
sentially forget about it: in practice we almost always want to work “model-
independently” with ∞-categories, i.e. view them as themselves being objects
of an ∞-category, where we can only do the fully coherent internal construc-
tions.
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There are already several books [Cis19,Lan21,RV22] that explain how to set
up the foundations of quasicategories, so in this text I have attempted to take a
different approach: I will try to explain directly how∞-categories work model-
independently. In my opinion there are several advantages to this approach:

▶ this material should hopefully be more useful to the reader who wants to
learn how to use ∞-categories for applications in their own area of math-
ematics, rather than to work on their foundations,

▶ but understanding first how things work without reference to a model
also often makes it much clearer what is really going on in model-specific
definitions and proofs.

The disadvantage, of course, is that the start of the text will not be entirely
rigorous, or at least not self-contained.

(An alternative approach to foundations, currently being worked out by
Cisinski, Cnossen, Nguyen and Walde, is to instead axiomatically specify how
a strict model of∞-categories should behave. While this is not tied to any par-
ticular model, it is different from the philosophy of this document, since it still
starts at a strict level. While this strictness is unsatisfying, it is admittedly likely
that it will always be necessary to start with strict constructions to rigorously
reach the platonic realm of homotopy theory from our world.)
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Chapter 2

Getting started

We are going to be working with ∞-groupoids and ∞-categories as basic ob-
jects, and we will start by describing the basic operations and structures relat-
ing these. We think of this as an “external” description of the ∞-categories of
(small)∞-groupoids and∞-categories — we emphasize that this is informal and
should in no way be thought of as an attempt to axiomatize ∞-groupoids and
∞-categories!

2.1 Basic properties of ∞-groupoids

Fact 2.1.1. There are objects called ∞-groupoids.

In an ∞-groupoid we have points, paths between points, homotopies be-
tween paths, homotopies between homotopies, and so on. However, we are
not allowed to distinguish between points that have a path between them, paths
that have a homotopy between them. An∞-groupoid𝑋 therefore does not have
a well-defined “set of points”, only a set 𝜋0𝑋 of path components.

We also have maps or morphisms between ∞-groupoids, homotopies be-
tween morphisms, homotopies between homotopies, and so on. For maps from
𝑋 to 𝑌 , these form the points, paths, homotopies, and so on in an ∞-groupoid
Map(𝑋,𝑌 ). We can compose morphisms, and for any ∞-groupoid 𝑋 there is an
identity morphism id𝑋 ∈ Map(𝑋,𝑋 ). Composition is unital and associative in
the only way that makes sense1: given morphisms

𝑊
𝑓
−→ 𝑋

𝑔
−→ 𝑌

ℎ−→ 𝑍,

there is a homotopy ℎ(𝑔𝑓 ) ≃ (ℎ𝑔) 𝑓 , as well as homotopies id𝑋 ◦ 𝑓 ≃ 𝑓 ≃ 𝑓 ◦ id𝑊 .

Definition 2.1.2. A morphism 𝑔 : 𝑋 → 𝑌 is an equivalence if there exist a mor-
phism 𝑓 : 𝑌 → 𝑋 and homotopies 𝑔 ◦ 𝑓 ≃ id𝑌 , 𝑓 ◦ 𝑔 ≃ id𝑋 .

1Since we are not allowed to say that two points in an ∞-groupoid are the same, only that
they are connected by a (specified) path.
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Remark 2.1.3. Here we are defining “being an equivalence” as a property. If we
wanted to define an∞-groupoid of equivalences, we should take a bit more care
to coherently define the data of an equivalence.

Fact 2.1.4. Sets are∞-groupoids, and if 𝑆,𝑇 are sets thenMap(𝑆,𝑇 ) is the setHom(𝑆,𝑇 )
of functions from 𝑆 to 𝑇 . For any ∞-groupoid 𝑋 there is a canonical map 𝑋 → 𝜋0𝑋

to its set of path components. If 𝑆 is a set, then composition with this map gives an
equivalence

Hom(𝜋0𝑋, 𝑆)
∼−→ Map(𝑋, 𝑆).

Observation 2.1.5. In particular, the one-point set ∗ is an∞-groupoid, and for
an ∞-groupoid 𝑋 we have an equivalence

∗ � Hom(𝜋0𝑋, ∗)
∼−→ Map(𝑋, ∗),

so that there is a unique map 𝑋 → ∗. In other words, ∗ is the terminal ∞-
groupoid.

Fact 2.1.6. The empty set ∅ is also an∞-groupoid. For any∞-groupoid𝑋 , the unique
map Map(∅, 𝑋 ) → ∗ is an equivalence. In other words, ∅ is the initial ∞-groupoid.

A commutative square

𝑊 𝑋

𝑌 𝑍

𝑓

𝑔 ℎ

𝑘

consists of ∞-groupoids and morphisms as shown, together with a homotopy
ℎ ◦ 𝑓 ≃ 𝑘 ◦ 𝑔.

Fact 2.1.7. Given morphisms 𝑋 → 𝑍 and 𝑌 → 𝑍 , there exists a pullback square

𝑋 ×𝑍 𝑌 𝑋

𝑌 𝑍 .

⌟

Here a point of 𝑋 ×𝑍 𝑌 is a point in 𝑋 and a point in 𝑌 together with a path
between their images in 𝑍 . More generally, a map𝑊 → 𝑋 ×𝑍 𝑌 is determined
by maps𝑊 → 𝑋 ,𝑊 → 𝑌 and a homotopy between their composites to 𝑍 .

Warning 2.1.8. This may be the least precise part of this discussion: If you
try to write down an ∞-groupoid of squares to make the universal property of
pullbacks precise, you’ll find that this has to be defined as itself being a pullback.
This unfortunately suggests that a rigorous development of the theory has to
be bootstrapped from a setting with strictly commuting squares.

Fact 2.1.9. Pullbacks of sets are computed as usual.
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As important special cases of pullbacks, we have:

▶ The fibre 𝑓 −1(𝑏) at 𝑏 of a map 𝑓 : 𝐸 → 𝐵 is defined as the pullback

𝑓 −1(𝑏) 𝐸

{𝑏} 𝐵.

⌟

▶ The product 𝑋 × 𝑌 of two ∞-groupoids 𝑋 and 𝑌 is defined as the pullback

𝑋 × 𝑌 𝑋

𝑌 ∗.

⌟

Fact 2.1.10. For ∞-groupoids 𝑋,𝑌 there is a canonical evaluation map

ev: Map(𝑋,𝑌 ) × 𝑋 → 𝑌,

so that for any ∞-groupoid 𝑍 the induced morphism

Map(𝑍,Map(𝑋,𝑌 )) → Map(𝑍 × 𝑋,Map(𝑋,𝑌 ) × 𝑋 )Map(𝑍 × 𝑋,𝑌 )

is an equivalence.

We can compose squares: Given two squares

𝑈 𝑊 𝑋

𝑉 𝑌 𝑍,

𝑎

𝑏 𝑔

𝑓

ℎ

𝑐

𝑘

we get a square

𝑈 𝑋

𝑉 𝑍,

𝑓 𝑎

𝑏 ℎ

𝑘𝑐

using the given homotopies together with the coherence homotopies for asso-
ciativity:

ℎ(𝑓 𝑎) ≃ (ℎ𝑓 )𝑎 ≃ (𝑘𝑔)𝑎 ≃ 𝑘 (𝑔𝑎) ≃ 𝑘 (𝑐𝑏) ≃ (𝑘𝑐)𝑏.

Fact 2.1.11. The composition of two pullback squares is again a pullback square.
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Definition 2.1.12. For points 𝑥,𝑦 ∈ 𝑋 , the path space 𝑋 (𝑥,𝑦) is the pullback

𝑋 (𝑥,𝑦) {𝑥}

{𝑦} 𝑋 .

⌟

If the two points are the same, this gives the loop space Ω𝑥𝑋 := 𝑋 (𝑥, 𝑥). A point
in the path space 𝑋 (𝑥,𝑦) is a path between 𝑥 and 𝑦; in Ω𝑥𝑋 we thus have a
canonical point, namely the constant path or the identity homotopy of the map
{𝑥} → 𝑋 . We can therefore iterate the loop space construction and obtain for
each 𝑛 the 𝑛-fold loop space Ω𝑛

𝑥𝑋 .

Exercise 2.1. Assuming that pushouts exist and have the expected universal property,
show that Ω𝑛

𝑥𝑋 ≃ Map∗ (𝑆𝑛, 𝑋 ), where the 𝑛-sphere is the pushout

𝑆𝑛 := ∗ ⨿𝑆𝑛−1 ∗,

and the space of pointed maps is the pullback

Map∗ (𝑆𝑛, 𝑋 ) Map(𝑆𝑛, 𝑋 )

{𝑥} Map(∗, 𝑋 ).

⌟

Definition 2.1.13. For 𝑥 ∈ 𝑋 and 𝑛, we define 𝜋𝑛 (𝑋, 𝑥) := 𝜋0Ω
𝑛
𝑥𝑋 . These are

the (𝑛th) homotopy groups of 𝑋 .

Fact 2.1.14. 𝜋1(𝑋, 𝑥) is a group, and 𝜋𝑛 (𝑋, 𝑥) is an abelian group for 𝑛 > 1.

Fact 2.1.15. Homotopy groups detect equivalences: a map 𝑓 : 𝑋 → 𝑌 is an equivalence
if and only if the induced maps 𝜋0𝑋 → 𝜋0𝑌 and

𝜋𝑛 (𝑋, 𝑥) → 𝜋𝑛 (𝑌, 𝑓 (𝑥))

are isomorphisms for all 𝑛 and all 𝑥 ∈ 𝜋0𝑋 .

Remark 2.1.16. If 𝜋0𝑋 � ∅, then this should be interpreted as implying that
∅ → 𝑋 is an equivalence.

Corollary 2.1.17. Equivalences of∞-groupoids satisfy the 3-for-2 property: if 𝑔 and
𝑓 are composable maps and two out of 𝑓 , 𝑔, 𝑔𝑓 are equivalences, then so is the third. □

Corollary 2.1.18. A morphism 𝑓 : 𝑋 → 𝑌 is an equivalence if and only if 𝜋0𝑋 →
𝜋0𝑌 is surjective and 𝑋 (𝑥, 𝑥 ′) → 𝑌 (𝑓 𝑥, 𝑓 𝑥 ′) is an equivalence for all 𝑥, 𝑥 ′ ∈ 𝑋 .

Proof. We know these conditions hold when 𝑓 is an equivalence. Moreover, if
𝑓 induces an isomorphism on 𝜋0 then the assumption on mapping spaces implies
we have isomorphisms on all homotopy groups, so that 𝑓 is an equivalence by
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Fact 2.1.15. It therefore suffices to show that under the given conditions the map
𝜋0 𝑓 is necessarily injective. But if 𝑥 and 𝑥 ′ are in different path components2

then 𝑋 (𝑥, 𝑥 ′) ≃ ∅ by Remark 2.1.16 and so 𝑌 (𝑓 𝑥, 𝑓 𝑥 ′) ≃ ∅, which implies that
𝑓 𝑥 and 𝑓 𝑥 ′ must also be in different components. □

Corollary 2.1.19. For an∞-groupoid 𝑋 , the map 𝑋 → 𝜋0𝑋 is an equivalence if and
only if 𝑋 (𝑥, 𝑥 ′) is either empty or contractible for all 𝑥, 𝑥 ′ ∈ 𝑋 .

Proof. Since we get an isomorphism on 𝜋0, this map is an equivalence if and
only if

𝑋 (𝑥, 𝑥 ′) → 𝜋0(𝑋 ) ( [𝑥] [𝑥 ′])

is an equivalence for all 𝑥, 𝑥 ′ ∈ 𝑋 . Here 𝜋0(𝑋 ) ( [𝑥] [𝑥 ′]) is either a point or
empty, depending on whether 𝑥 and 𝑥 ′ lie in the same path component or
not. □

Corollary 2.1.20. A non-empty∞-groupoid 𝑋 is contractible if and only if 𝑋 (𝑥, 𝑥 ′)
is contractible for all 𝑥, 𝑥 ′ ∈ 𝑋 .

Proof. If 𝑋 is non-empty, then 𝑋 → ∗ is trivially surjective on 𝜋0, so if it also
gives equivalences on all path spaces it is an equivalence. □

Fact 2.1.21 (Long exact sequence of homotopy groups). For a map 𝑓 : 𝐸 → 𝐵,
a point 𝑏 ∈ 𝐵 and a point 𝑒 ∈ 𝑓 −1(𝑏), we have a long exact sequence of homotopy
groups

· · · → 𝜋𝑛 (𝑓 −1(𝑏), 𝑒) → 𝜋𝑛 (𝐸, 𝑒) → 𝜋𝑛 (𝐵,𝑏) → 𝜋𝑛−1(𝑓 −1(𝑏), 𝑒) → · · · → 𝜋0(𝐸) → 𝜋0(𝐵),

interpreted appropriately for the group 𝜋1 and the pointed set 𝜋0.

Proposition 2.1.22. A map 𝑓 : 𝐸 → 𝐵 is an equivalence if and only if all the fibres
𝑓 −1(𝑏) for 𝑏 ∈ 𝐵 are contractible.

Proof. If the fibres of 𝑓 are contractible, then the long exact sequence gives
isomorphisms on all homotopy groups, so that 𝑓 is an equivalence by Fact 2.1.15.
Conversely, if 𝑓 is an equivalence then the long exact sequence shows that 𝜋0
of the fibres are points and the higher homotopy groups are 0, so they are
contractible. □

Exercise 2.2. Use the 5-lemma to show that given a commutative triangle

𝑋 𝑌

𝐵,

𝑓

𝑝 𝑞

the morphism 𝑓 is an equivalence if and only if the induced maps on fibres 𝑝−1 (𝑏) →
𝑞−1 (𝑏) are equivalences for all 𝑏 ∈ 𝐵.

2Here we are somewhat informally using our intuition about “path components”!
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Corollary 2.1.23. A commutative square

𝑋 ′ 𝑌 ′

𝑋 𝑌

𝑓 ′ 𝑓

𝑔

is a pullback if and only if for every 𝑥 ∈ 𝑋 , the induced map on fibres is an equivalence.
Proof. The square is a pullback if the induced map 𝑋 ′ → 𝑌 ′ ×𝑌 𝑋 is an equiva-
lence, which we can check on fibres over 𝑥 ∈ 𝑋 . But since pullbacks compose,
this just gives the map on fibres 𝑓 ′−1(𝑥) → 𝑓 −1(𝑔(𝑥)) in the original square. □

Exercise 2.3. Consider a commutative square

𝑋 ′ 𝑌 ′

𝑋 𝑌 .

𝑓 ′

⌟

𝑓

Show that if 𝑓 is an equivalence, then the square is a pullback if and only if 𝑔 is also an
equivalence.

Exercise 2.4. Suppose we have a commutative diagram

𝑋 𝑋 ′ 𝑋 ′′

𝑌 𝑌 ′ 𝑌 ′′ .

(1) If the right and composite squares are both pullbacks, then so is the left-hand
square.

(2) If 𝜋0𝑌 → 𝜋0𝑌
′ is surjective and the left and composite squares are both pullbacks,

then so is the right-hand square.

Exercise 2.5. Show that the path space𝑋 (𝑥,𝑦) is also the fibre at {(𝑥,𝑦)} of the diagonal
map 𝑋 → 𝑋 × 𝑋 .

2.2 Monomorphisms of ∞-groupoids

As a warm-up to future discussions of (full) subcategories of∞-categories, here
we will briefly discuss monomorphisms of ∞-groupoids.

Definition 2.2.1. A morphism of∞-groupoids 𝑓 : 𝑋 → 𝑌 is a monomorphism if
the commutative square

𝑋 𝑌

𝑋 × 𝑋 𝑌 × 𝑌

𝑓

Δ Δ

𝑓 ×𝑓

is a pullback.
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Exercise 2.6. Show that monomorphisms are closed under base change.

Observation 2.2.2. Using Corollary 2.1.23, it follows that 𝑓 is a monomor-
phism if and only if for all 𝑥, 𝑥 ′ ∈ 𝑋 , the induced morphism on path spaces

𝑋 (𝑥, 𝑥 ′) → 𝑌 (𝑓 𝑥, 𝑓 𝑥 ′)

is an equivalence.

Lemma 2.2.3. A morphism of ∞-groupoids 𝑓 : 𝑋 → 𝑌 is a monomorphism if and
only if the fibres of 𝑓 are all either empty or contractible.
Proof. The fibre condition for pullbacks shows that 𝑓 is a monomorphism if and
only if the diagonal map 𝑓 −1(𝑦) → 𝑓 −1(𝑦) × 𝑓 −1(𝑦) is an equivalence for all
𝑦 ∈ 𝑌 . We can also interpret this condition as saying that 𝑓 −1(𝑦) → ∗ is a
monomorphism, or in other words that 𝑓 −1(𝑦) (𝑝, 𝑞) is contractible for all 𝑝, 𝑞 ∈
𝑓 −1(𝑦). By Corollary 2.1.20 this means 𝑓 −1(𝑦) is either empty or contractible.

□

Proposition 2.2.4. If 𝑋 → 𝑌 is a monomorphism, then 𝜋0𝑋 → 𝜋0𝑌 is a monomor-
phism of sets, and the commutative square

𝑋 𝑌

𝜋0𝑋 𝜋0𝑌

is a pullback.
Proof. It follows from the long exact sequence that we have an injection on 𝜋0.
Now we use the fibre condition for pullbacks (2.1.23) to conclude that the square
is a pullback, since these are either both empty or both contractible in the two
rows. □

Observation 2.2.5. Suppose 𝑌0 → 𝑌 is a monomorphism of ∞-groupoids.
Combining the pullback from Proposition 2.2.4 with the universal property of
𝜋0 for maps into sets from Fact 2.1.4, we see that for any∞-groupoid 𝑍 we have
a pullback square

Map(𝑍,𝑌0) Map(𝑍,𝑌 )

Hom(𝜋0𝑍, 𝜋0𝑌0) Hom(𝜋0𝑍, 𝜋0𝑌 ) .

Exercise 2.7. Let 𝑋 be an∞-groupoid and consider a subset 𝑆 ⊆ 𝜋0𝑋 . Show that if we
form the pullback

𝑌 𝑋

𝑆 𝜋0𝑋

then the induced map 𝜋0𝑌 → 𝑆 is an isomorphism.
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Corollary 2.2.6. Given a subset 𝑆 of 𝜋0𝑋 , there exists a unique monomorphism
𝑖 : 𝑋 ′ → 𝑋 so that 𝜋0𝑖 is the inclusion 𝑆 ↩→ 𝜋0𝑋 . □

Definition 2.2.7. A morphism of ∞-groupoids 𝑓 : 𝑋 → 𝑌 is an epimorphism if
𝜋0 𝑓 is a surjection.

Observation 2.2.8. For any morphism of ∞-groupoids 𝑓 : 𝑋 → 𝑌 , we can
factor 𝜋0 𝑓 uniquely as 𝜋0𝑋

𝑠−→ 𝑆
𝑖−→ 𝜋0𝑌 where 𝑠 is surjective and 𝑖 is injective.

Let 𝑃 := 𝑌 ×𝜋0𝑌 𝑆 . Then we get a commutative diagram

𝑋 𝑃 𝑌

𝜋0𝑋 𝑆 𝜋0𝑌

where the vertical maps give isomorphisms on 𝜋0. It follows that 𝑋 → 𝑃 is an
epimorphism, while 𝑃 → 𝑌 is a monomorphism, so every map of∞-groupoids
factors in this way.

Corollary 2.2.9. A morphism of ∞-groupoids is an equivalence if and only if it is a
monomorphism and is surjective on 𝜋0.

Proof. It is clear that both conditions hold for an equivalence. Conversely, us-
ing Proposition 2.2.4 we see that a monomorphism that is surjective on 𝜋0 is
an isomorphism on 𝜋0 and is pulled back from this, so it is an equivalence by
Exercise 2.3. □

Exercise 2.8. Given a commutative triangle

𝑋 𝑌

𝐵

𝑓

𝑝

𝑞

of ∞-groupoids, the morphism 𝑓 is a monomorphism if and only if for all 𝑏 ∈ 𝐵, the
induced map on fibres 𝑋𝑏 → 𝑌𝑏 is a monomorphism.

Lemma 2.2.10. A commutative square of ∞-groupoids

𝑋 𝑌

𝑍 𝑊 ,

where the vertical map are monomorphisms, is a pullback square if and only if it is one
on 𝜋0.
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Proof. Consider the commutative cube

𝑋 𝑌

𝜋0𝑋 𝜋0𝑌

𝑍 𝑊

𝜋0𝑍 𝜋0𝑊,

where the top and bottom faces are pullbacks by Proposition 2.2.4. It then
follows from Exercise 2.4 that the back face is a pullback if and only if the front
face is a pullback, since the map𝑄 → 𝜋0𝑄 is surjective on 𝜋0 for any∞-groupoid
𝑄 . □

2.3 Basic properties of ∞-categories

Fact 2.3.1. There are objects called ∞-categories. There are also functors between
∞-categories, and given a pair of ∞-categories C,D there is a functor ∞-category
Fun(C,D). For an ∞-category C there is an identity functor idC : C→ C, and we can
compose functors (which also induces functors on functor ∞-categories).

Fact 2.3.2. ∞-groupoids are ∞-categories. An ∞-category C has an underlying
∞-groupoid C≃, obtained by “throwing away the non-invertible morphisms”, with a
canonical map C≃ → C (which is the identity if C is an ∞-groupoid). We write

Map(C,D) := Fun(C,D)≃;

then the underlying∞-groupoid of C satisfies: for any∞-groupoid 𝑋 , the induced map

Map(𝑋,C≃) → Map(𝑋,C)

is an equivalence.

Paths in Map(C,D) are natural equivalences, and we can say that a functor
𝐹 : C → D is an equivalence if there exists a functor 𝐺 : D → C and natural
equivalences 𝐺𝐹 ≃ idC, 𝐹𝐺 ≃ idD. Composition of functors is then unital and
associative up to (coherent) natural equivalences.

Fact 2.3.3. There are pullbacks of∞-categories, just as for∞-groupoids, and they are
preserved by Map and Fun.

Fact 2.3.4. For∞-categories C and D, there is an evaluation functor Fun(C,D)×C→
D, which induces an equivalence

Fun(B, Fun(C,D)) ≃ Fun(B × C,D)

for all ∞-categories B.
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Fact 2.3.5. Ordinary categories are ∞-categories. If C,D are ordinary categories, then
Fun(C,D) is the ordinary category of functors. (And if C is an ordinary category then
C≃ is its underlying groupoid.)

Fact 2.3.6. Any ∞-category C has a homotopy category ℎC, which is an ordinary
category, with a canonical functor C→ ℎC. If D is an ordinary category, then

Fun(ℎC,D) → Fun(C,D)

is an equivalence.

Fact 2.3.7. Given functors A→ B,A→ C, there exists a pushout square

A B

C B ⨿A C,

so that for any ∞-category D the induced square

Fun(B ⨿A C,D) Fun(B,D)

Fun(C,D) Fun(A,D)

is a pullback. Pushout squares are closed under composition of squares.

Definition 2.3.8.

▶ Let [𝑛]Seg be the iterated pushout [1] ⨿[0] · · · ⨿[0] [1] of 𝑛 copies of [1]
along the two inclusions of [0], and define the Segal map to be the map
determined by the inert inclusions [1] � {𝑖 − 1, 𝑖} ↩→ [𝑛] and [0] � {𝑖} ↩→
[𝑛].

▶ Let 𝐸 be the iterated pushout [0] ⨿[1] [3] ⨿[1] [0] using the inclusions
{0 < 2} → [3], {1 < 3} → [3].3

Fact 2.3.9. The following functors are equivalences:

▶ The Segal maps [𝑛]Seg → [𝑛] .

▶ The map 𝐸 → ∗.

▶ The map [2] ⨿[1] [2] → [1] × [1] that picks out the two composite maps
(0, 0) → (0, 1) → (1, 1), (0, 0) → (1, 0) → (1, 1).

3A functor 𝐸 → C then specifies morphisms 𝑥
𝑓
−→ 𝑦

𝑔
−→ 𝑥

ℎ−→ 𝑦 and identifies 𝑔𝑓 and ℎ𝑔 with
identities, so that 𝑔 has a left and a right inverse. In other words, a map from 𝐸 is a (coherent)
equivalence in C.
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Fact 2.3.10. Given an ∞-category C, there exists a localization ∥C∥ to an ∞-
groupoid, with a canonical map C → ∥C∥, so that for any ∞-groupoid 𝑋 the induced
map

Map(∥C∥, 𝑋 ) → Map(C, 𝑋 )

is an equivalence. Moreover, ∥ [1] ∥ ≃ ∗.

Fact 2.3.11. A functor 𝐹 : C→ D is an equivalence if and only if the maps

C≃ → D≃, Map( [1],C) → Map( [1],D)

are equivalences of ∞-groupoids.

Lemma 2.3.12. The following are equivalent for an ∞-category C:

(1) C is an ∞-groupoid.

(2) C≃ → C is an equivalence.

(3) The map
C≃ � Map( [0],C) → Map( [1],C)

induced by [1] → [0] is an equivalence of ∞-groupoids.

(4) The functor
C→ Fun( [1],C)

induced by [1] → [0] is an equivalence of ∞-categories.

Proof. The first two points are equivalent since the inclusion of the underlying
∞-groupoid is assumed to be invertible when C is an ∞-groupoid. The third
point is implied by C being an ∞-groupoid since ∥ [1] ∥ is contractible; for the
converse, we consider the commutative square

Map( [0],C≃) Map( [0],C)

Map( [1],C≃) Map( [1],C).

≃

≃

Here the top and left maps are equivalences, so the right map is an equivalence
if and only if the bottom map is, and the latter corresponds to C being an ∞-
groupoid since [0] and [1] detect equivalences. Since (4) immediately implies
(3), it remains to show that (3) implies (4). For this, it suffices to prove that

Map( [1],C) → Map( [1], Fun( [1],C)) .

is an equivalence. Here we can identify the right-hand side as Map( [1] × [1],C)
and then use the decompositions of [1] × [1] as [2] ⨿[1] [2] and of [2] as [1] ⨿[0]
[1] together with (3) to see that this ∞-groupoid is equivalent to C≃. □
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Exercise 2.9. Show that if𝑋 is an∞-groupoid, then so is Fun(C, 𝑋 ) for any∞-category
C.

Fact 2.3.13. For an∞-category C, there is an opposite∞-category Cop. For ordinary
categories this gives the usual opposite category, an satisfies

▶ (Cop)op ≃ C,

▶ (Cop)≃ ≃ C≃,

▶ Map(Cop,Dop) ≃ Map(C,D).

Exercise 2.10. Show that Fun(C,D)op ≃ Fun(Cop,Dop).

2.4 Lifting properties

It will be convenient to characterize a number of important classes of functors
by lifting properties, so we include a brief discussion of these.4

Definition 2.4.1. For morphisms ℓ : 𝐴→ 𝐵 and 𝑟 : 𝑋 → 𝑌 we say that 𝑟 is right
orthogonal to ℓ (and dually that ℓ is left orthogonal to 𝑟 ) if for any commutative
square

𝐴 𝑋

𝐵 𝑌,

ℓ 𝑟

the space of diagonal lifts 𝐵 → 𝑋 is contractible. In other words, the fibres of
the map

Map(𝐵,𝑋 ) → Map(𝐵,𝑌 ) ×Map(𝐴,𝑌 ) Map(𝐴,𝑋 ),

given by composition with ℓ and 𝑟 , are contractible. This is equivalent to this
map being an equivalence, or to the commutative square

Map(𝐵,𝑋 ) Map(𝐵,𝑌 )

Map(𝐴,𝑋 ) Map(𝐴,𝑌 )

𝑟∗

ℓ∗ ℓ∗

𝑟∗

being a pullback.

Example 2.4.2. A morphism of ∞-groupoids 𝑋
𝑓
−→ 𝑌 is a monomorphism if

and only if it is right orthogonal to ∗ ⨿ ∗ → ∗, since this amounts to having a
4This section can be read as either defining lifting properties among ∞-categories or inside

any fixed∞-category C, except that we haven’t quite gotten to the point where the latter makes.
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pullback square

𝑋 𝑌

𝑋 × 𝑋 𝑌 × 𝑌 .

𝑓

𝑓 ×𝑓

Lemma 2.4.3. Epimorphisms in Gpd∞ are left orthogonal to monomorphisms.

Proof. Suppose 𝑖 : 𝑋0 → 𝑋 is a monomorphism and 𝑝 : 𝐴 → 𝐵 is an epimor-
phism. Then we have a commutative cube

Map(𝐵,𝑋0) Map(𝐵,𝑋 )

Map(𝐴,𝑋0) Map(𝐴,𝑋 )

Hom(𝜋0𝐵, 𝜋0𝑋0) Hom(𝜋0𝐵, 𝜋0𝑋 )

Hom(𝜋0𝐴, 𝜋0𝑋0) Hom(𝜋0𝐴, 𝜋0𝑋 )

where the front and back faces are pullbacks. Moreover, the bottom face is a
pullback since surjections are left orthogonal to injections in Set. Hence the top
face is also a pullback, as required. □

Notation 2.4.4. We use the notation ℓ ⊥ 𝑟 as an abbreviation for “ℓ is left
orthogonal to 𝑟”.

Exercise 2.11. Show that a map is left orthogonal to itself if and only if it is an equiva-
lence.

Lemma 2.4.5. Suppose 𝑓 : 𝐴 → 𝐵 is left orthogonal to a map 𝑟 : 𝑋 → 𝑌 . Then a
map 𝑔 : 𝐵 → 𝐶 is left orthogonal to 𝑟 if and only if 𝑔 ◦ 𝑓 is so.

Proof. We have a commutative diagram

Map(𝐶,𝑋 ) Map(𝐵,𝑋 ) Map(𝐴,𝑋 )

Map(𝐶,𝑌 ) Map(𝐵,𝑌 ) Map(𝐴,𝑌 )

where 𝑓 ⊥ 𝑟 amounts to the right-hand square being a pullback. The statement
then follows from the 3-for-2 property of pullbacks (Exercise 2.4). □

The next properties are proved by similar manipulations of pullbacks, and
are left as an exercise for the reader.
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Lemma 2.4.6. Suppose we have a commutative diagram

𝑋 𝑌 𝑍

𝑋 ′ 𝑌 ′ 𝑍,

𝑓 𝑔 ℎ

such that each of the morphisms 𝑓 , 𝑔 and ℎ is left orthogonal to a morphism 𝑟 : 𝑈 → 𝑉 .
Then the induced morphism on pushouts 𝑋 ⨿𝑌 𝑍 → 𝑋 ′ ⨿𝑌 ′ 𝑍 ′ is also left orthogonal
to 𝑟 . □

Lemma 2.4.7. Suppose we have a pushout square

𝐴 𝐵

𝐶 𝐵 ⨿𝐴 𝐶
𝑓 𝑓 ′

where 𝑓 is left orthogonal to a morphism 𝑟 . Then 𝑓 ′ is also left orthogonal to 𝑟 . □

Definition 2.4.8. Recall that an object 𝑋 is a retract of 𝑌 if there are maps 𝑋 →
𝑌 → 𝑋 and a homotopy between the composite and the identity of𝑋 . Similarly,
we say that a morphism 𝑓 ′ is a retract of 𝑓 if there is a commutative diagram

𝑋 ′ 𝑋 𝑋 ′

𝑌 ′ 𝑌 𝑌 ′

𝑓 ′ 𝑓 𝑓 ′

and a homotopy between the composite and the degenerate square

𝑋 ′ 𝑋 ′

𝑌 ′ 𝑌 ′.

id𝑋 ′

𝑓 ′ 𝑓 ′

id𝑌 ′

Exercise 2.12. Show that any retract of an equivalence is again an equivalence.

Lemma 2.4.9. Suppose 𝑓 ′ is a retract of 𝑓 . If 𝑓 is left orthogonal to a morphism 𝑟 ,
then so is 𝑓 ′. □

2.5 Conservative functors and mapping spaces

Definition 2.5.1. A functor C → D is conservative if it is right orthogonal to
𝑠0 : [1] → [0].

Exercise 2.13. The following are equivalent for a functor 𝐹 : C→ D:
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(1) 𝐹 is conservative.

(2) The fibres of 𝐹 are all ∞-groupoids.

(3) The commutative square
C≃ C

D≃ D

is a pullback.

Remark 2.5.2. We will later see (Corollary 2.9.5) that the degeneracy map
C≃ → Map( [1],C) is a monomorphism of ∞-groupoids for every ∞-category
C. Using Lemma 2.2.10 it follows that a functor 𝐹 : C → D is conservative if
and only if we have a pullback square of sets

𝜋0C
≃ 𝜋0D

≃

𝜋0Map( [1],C) 𝜋0Map( [1],D),

which we can interpret as saying that a morphism in C has the property of being
an equivalence if and only if its image in D is an equivalence.

Notation 2.5.3. We write Ar(C) := Fun( [1],C).

Exercise 2.14. Use the pushout decompositions [2] ≃ [1] ⨿[0] [1] and [1] × [1] ≃
[2] ⨿[1] [2] to show that there is a pushout square

[1] ⨿ [1] [1] × [1]

[0] ⨿ [0] [1] .

(id×𝑑0𝑠0 )⨿(id×𝑑1𝑠0 )

𝑠0⨿𝑠0 𝑠0×id

𝑑0⨿𝑑1

(Informally, this says that collapsing the two vertical edges in the square [1] × [1] gives
the edge [1].)

Proposition 2.5.4. C→ D is conservative if and only if

C D

Ar(C) Ar(D)

is a pullback.
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Proof. Pullbacks are detected on (–)≃ and Map( [1], –). Conservativity is equiv-
alent to the former, so it suffices to show that it implies the latter. The resulting
square can be identified as

Map( [1],C) Map( [1],D)

Map( [1] × [1],C) Map( [1] × [1],D) .

This is a pullback since it follows from Lemma 2.4.7, Lemma 2.4.6, and Ex-
ercise 2.14 that a conservative functor is right orthogonal to the projection
[1] × [1] → [1]. □

Proposition 2.5.5. Ar(C) → C × C is conservative.

Proof. Unpacking the definition, this is immediate from the pushout in Exer-
cise 2.14. □

Definition 2.5.6. For objects 𝑥,𝑦 ∈ C, the mapping space

MapC(𝑥,𝑦) = C(𝑥,𝑦)

is the fibre
C(𝑥,𝑦) Ar(C)

{(𝑥,𝑦)} C × C.

Since the right vertical map is conservative, this is indeed a space.

Exercise 2.15. Use the pushout decomposition of [2] to define composition maps

C(𝑥,𝑦) × C(𝑦, 𝑧) → C(𝑥, 𝑧).

(For extra credit, use the decomposition of [3] to show this is associative up to a specified
homotopy.)

2.6 Fully faithful functors

Definition 2.6.1. A functor of ∞-categories 𝐹 : C → D is fully faithful if it is
right orthogonal to 𝜕[1] → [1], i.e. if the commutative square

Map( [1],C) Map( [1],D)

(C≃)×2 (D≃)×2

is a pullback.
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Observation 2.6.2. This square is a pullback if and only if for all 𝑥,𝑦 ∈ C, the
map on fibres

C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦)
is an equivalence, which is how we normally think of full faithfulness.

Proposition 2.6.3. 𝐹 : C→ D is fully faithful if and only if the commutative square

Ar(C) Ar(D)

C × C D ×D

is a pullback.

Proof. Pullbacks are detected on maps from [0] and [1], so it suffices to show
that a fully faithful map is also right orthogonal to (𝜕[1]) × [1] → [1] × [1].
Consider the composition

[0]4 → (𝜕[1]) × [1] → [1] × [1];

the first map is the coproduct of two copies of 𝜕[1] → [1], so using Lemma 2.4.6
and Lemma 2.4.5 we conclude that it suffices to show that [0]⨿4 → [1] × [1]
is left orthogonal to fully faithful maps. Using the decomposition [1] × [1] ≃
[2] ⨿[1] [2], we can view this map as the map on pushouts in the diagram

[0]⨿3 [0]⨿2 [0]⨿3

[2] [1] [2],

so using Lemma 2.4.6 it’s enough to check that [0]⨿3 → [2] is left orthogonal
to fully faithful maps. But this follows from the same argument applied to the
diagram

[0]⨿2 [0] [0]⨿2

[1] [0] [1],

using the Segal decomposition of [2]. □

Corollary 2.6.4. If 𝐹 : C → D is fully faithful, then so is 𝐹∗ : Fun(A,C) →
Fun(A,D) for any ∞-category A.

Proof. We must show that a commutative square of the form

Ar(Fun(A,C)) Ar(Fun(A,C))

Fun(A,C)×2 Fun(A,D)×2
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is a pullback. But we can rewrite this as

Fun(A, Ar(C)) Fun(A, Ar(D))

Fun(A,C×2) Fun(A,D×2),

and Fun(C, –) preserves pullbacks. □

Exercise 2.16. Show that the following are equivalent for a commutative square

C C′

D D′

𝐹

𝐺

where 𝐹 and 𝐺 are fully faithful:

(1) The square is a pullback of ∞-categories.

(2) The square gives a pullback of ∞-groupoids on cores.

(3) The square gives a pullback of sets on 𝜋0 (–)≃.

(For the last point, use Lemma 2.2.10 and Corollary 2.7.3.)

2.7 Equivalences among ∞-categories

We now want to show that a functor of ∞-categories is an equivalence if and
only if it is fully faithful and essentially surjective. This will follow quite easily
from the following key property of fully faithful functors:

Theorem 2.7.1 (Martini, [Mar21, Lemma 3.8.8]). A fully faithful functor is right
orthogonal to [1] → [0] , i.e. fully faithful functors are conservative.

Remark 2.7.2. In the following we will freely use properties of pushouts, such
as the 3-for-2 property, that we have not actually established, though we know
the dual properties for pullbacks. In fact, we can avoid assuming these as axioms
since we only care about what happens when we map these pushout squares into
some target ∞-category. We could therefore say that a commutative square is
a “weak pushout” if it gives a pullback on Map(–,C) for any ∞-category C;
then the properties we need for weak pushouts follow from those we know
for pullback squares. Since the Yoneda lemma will eventually imply that weak
pushouts are pushouts, we will ignore the distinction.

Proof of Theorem 2.7.1. Recall that we defined

𝐸 := ∗ ⨿{0<2} [3] ⨿{1<3} ∗,
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and that 𝐸 ≃ ∗. Our first task is to use the Segal decompositions to give an
alternative characterization of 𝐸 (or ∗) as a pushout. Let’s first define 𝐾 as the
pushout

𝐾 := {0 < 1 < 2} ⨿{1<2} {1 < 2 < 3}

of two copies of [2] along a copy of [1]; it is easy to see that the Segal decom-
positions imply that the implicit map 𝐾 → [3] is an equivalence. We can then
consider the commutative diagram

{0 < 2} ⨿ {1 < 3} 𝐾 {[3]}

∗ ⨿ ∗ 𝐸′ 𝐸,

∼

where 𝐸′ is defined as the pushout in the left square. Here the composite square
is a pushout by the definition of 𝐸, so the right square is a pushout by the 3-
for-2 property, which means that 𝐸′ → 𝐸 is an equivalence. Thus 𝐸′ ≃ ∗, and
it suffices to show that the composite map {1 < 2} → 𝐾 → 𝐸′ is left orthogonal
to fully faithful functors.

We have defined 𝐸′ by first gluing two copies of [2] and then collapsing
two copies of [1]. We can also do this in the opposite order: if we first define
𝐻 by the pushout

{0 < 2} ∗

[2] 𝐻,

then we can recover 𝐸′ as a pushout

[1] 𝐻

𝐻 𝐸′,

𝛽

𝛼 (0<1<2)

(1<2<3)

where the two maps from𝐻 are obtained by collapsing an edge in the two maps
from [2] to 𝐾 ; the maps 𝛼 and 𝛽 correspond to the edges 0 < 1 and 1 < 2 in
[2], respectively. Applying Lemma 2.4.7 and Lemma 2.4.5 we conclude that it
suffices to show the maps 𝛼 and 𝛽 are left orthogonal to fully faithful maps; we
will prove this for 𝛼 , the proof for 𝛽 is almost the same.

Let
Λ2

0 := {0 < 1} ⨿{0} {0 < 2}
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and consider the diagram

{0 < 2} ∗

Λ2
0 [1]

[2] 𝐻.

𝛼

Here the top and composite squares are pushouts, hence so is the bottom square.
It therefore suffices to show that the map Λ2

0 → [2] is left orthogonal to fully
faithful maps. For this we consider the square

{0 < 1} ⨿ {2} Λ2
0

{0 < 1} ⨿{1} {1 < 2} [2] .∼

Since the bottom map is an equivalence, it follows from Lemma 2.4.5 that
it’s enough to show the top and left maps are left orthogonal to fully faith-
ful functors. But these are both pushouts of 𝜕[1] → [1], so this holds by
Lemma 2.4.7. □

Corollary 2.7.3. If 𝐹 : C → D is fully faithful, then its underlying morphism of
∞-groupoids C≃ → D≃ is a monomorphism of spaces.

Proof. By definition 𝐹 is right orthogonal to [0] ⨿ [0] → [1], and also to [1] →
[0] by Theorem 2.7.1. It is then also right orthogonal to the composite [0] ⨿
[0] → [0], as required, by Lemma 2.4.5. □

Definition 2.7.4. A functor 𝐹 : C → D is essentially surjective if the induced
morphism 𝜋0C

≃ → 𝜋0D
≃ is surjective.

Observation 2.7.5. Suppose 𝐹 : C→ D gives an equivalence on cores. Then 𝐹
is fully faithful if and only ifMap( [1],C) → Map( [1],D) is an equivalence. Since
equivalences are detected on maps from [0] and [1] (Fact 2.3.11), this means that
𝐹 is an equivalence if and only if it is fully faithful and 𝐹≃ is an equivalence of
∞-groupoids.

Corollary 2.7.6. A functor of∞-categories is an equivalence if and only if it is fully
faithful and essentially surjective.

Proof. By Observation 2.7.5, a functor of ∞-categories is an equivalence if and
only if it is fully faithful and induces an equivalence on cores. By Corollary 2.7.3,
any fully faithful functor is a monomorphism on cores, so it suffices to observe
that a monomorphism of ∞-groupoids is an equivalence if and only if it is sur-
jective on 𝜋0 by Corollary 2.2.9. □
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2.8 Full subcategories

Fact 2.8.1. Given an ∞-category C and a monomorphism of ∞-groupoids 𝑖 : 𝑋 ↩→
C≃, there exists a functor of ∞-categories 𝚤 : 𝑖∗C → C such that 𝚤≃ ≃ 𝑖 , and for any
∞-category D the commutative square

Map(D, 𝑖∗C) Map(D,C)

Map(D≃, 𝑋 ) Map(D≃,C≃)

is a pullback. Taking D = [1] we see that 𝚤 is fully faithful.

Lemma 2.8.2. Suppose 𝑗 : C′ → C is a fully faithful functor. Then 𝑗 ≃ 𝚥≃.

Proof. Let 𝑖 := 𝑗≃. Then we get a factorization of 𝑗 as

C′
𝑓
−→ 𝑖∗C

𝚤−→ C

such that 𝑓 ≃ ≃ idC′≃ . Moreover, 𝑓 is fully faithful since 𝚤 and 𝑗 are so (by the
dual of Lemma 2.4.5), hence 𝑓 is fully faithful and essentially surjective, and so
an equivalence. □

Lemma 2.8.3. Essentially surjective functors are left orthogonal to fully faithful ones.

Proof. Suppose 𝑖 : C′ → C is fully faithful and 𝑝 : A→ B is essentially surjective.
Then we have a commutative cube

Map(B,C′) Map(B,C)

Map(A,C′) Map(A,C)

Map(B≃,C′≃) Map(B≃,C≃)

Map(A≃,C′≃) Map(A≃,C≃)

where the front and back faces are pullbacks by Fact 2.8.1 and Lemma 2.8.2,
while the bottom face is a pullback by Lemma 2.4.3. Hence the top face is also
a pullback, as required. □

Observation 2.8.4. Since monomorphisms of ∞-groupoids with target 𝑋 are
uniquely determined by subsets of 𝜋0(𝑋 ) by Corollary 2.2.6, it follows that any
subset 𝑆 of 𝜋0(C≃) determines a unique fully faithful functor C′ ↩→ C. We refer
to C′ as the full subcategory spanned by the objects in 𝑆 .
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Observation 2.8.5. Consider an arbitrary functor 𝐹 : C → D. Then by Ob-
servation 2.2.8 we can factor 𝐹≃ as

C≃
𝑠−→ 𝑋

𝑖−→ D≃

where 𝑠 is surjective on 𝜋0 and 𝑖 is a monomorphism. It follows that 𝐹 factors
through the full subcategory 𝑖∗D as

C
𝐺−→ 𝑖∗D ↩→ D,

where 𝐺≃ ≃ 𝑠. Thus any functor has a canonical factorization as an essentially
surjective functor followed by a fully faithful one.

Lemma 2.8.6. Suppose C0 ↩→ C is fully faithful. Then for any ∞-category D, the
fully faithful functor Fun(D,C0) ↩→ Fun(D,C) presents the full subcategory spanned
by the objects 𝐹 : D→ C such that 𝐹 (𝑑) ∈ C0 for all [𝑑] ∈ 𝜋0(D≃).

Proof. It follows from Lemma 2.8.2 and Observation 2.2.5 that we have a com-
mutative diagram

Map(D,C0) Map(D,C)

Map(D≃,C≃0 ) Map(D≃,C≃)

Hom(𝜋0(D≃), 𝜋0(C≃0 )) Hom(𝜋0(D≃), 𝜋0(C≃))

where both squares are pullbacks. □

2.9 Equivalences in an ∞-category

Proposition 2.9.1. For any∞-category C, the degeneracy functor C→ Ar(C) is fully
faithful.

Proof. Unpacking the orthogonality condition, we once again get Map(–,C)
applied to the pushout square from Exercise 2.14. □

Notation 2.9.2. It is convenient to introduce the notation Areq(C) for the full
subcategory of Ar(C) that is the image of the degeneracy functor — this is the
full subcategory of invertible morphisms, since we can also think of it as the
image of Fun(𝐸,C) → Ar(C).
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Observation 2.9.3. We have a commutative diagram

C

Areq(C)

C C,

𝑖
= =

𝑠 𝑡

where 𝑖 is an equivalence. It follows that both 𝑠 and 𝑡 are also equivalences, and
the composite

C
𝑡−1

−−→ Areq(C)
𝑠−→ C

is equivalent to the identity of C.

Notation 2.9.4. It will sometimes be convenient to write

C[𝑛] := Map( [𝑛],C).

Corollary 2.9.5. The degeneracy map C[0] → C[1] is a monomorphism of ∞-
groupoids for any ∞-category C, with image the equivalences in C. □

Exercise 2.17 (★). The fact that the degeneracy map is a monomorphism for any ∞-
category suggests that we should have a pushout square

[1] ⨿ [1] [0] ⨿ [0]

[1] [0] .

Give a direct proof of this. (You will have to use that 𝐸 ≃ ∗, as we did in the proof of
Theorem 2.7.1 — indeed, for an arbitrary simplicial ∞-groupoid 𝑋 it is not the case
that the degeneracy 𝑋0 → 𝑋1 is necessarily a monomorphism.)

Lemma 2.9.6. Suppose 𝑓 : 𝑥 → 𝑦 is a morphism in an ∞-category C. Then the
following are equivalent:

(1) 𝑓 is an equivalence.

(2) For all 𝑐 ∈ C, the morphism 𝑓∗C(𝑐, 𝑥) → C(𝑐,𝑦) is an equivalence of∞-groupoids.

(3) For all 𝑐 ∈ C, the morphism 𝑓 ∗C(𝑦, 𝑐) → C(𝑥, 𝑐) is an equivalence of∞-groupoids.

Proof. We prove that the first and second conditions are equivalent; the equiv-
alence of the first and third conditions is proved similarly. First note that if 𝑓
is an equivalence with inverse 𝑔, then for any 𝑐 ∈ C, the morphism 𝑔∗ gives an
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inverse to 𝑓∗, so that 𝑓∗ is an equivalence. Conversely, if the second condition
holds then composition with 𝑓 in particular gives equivalences

C(𝑦, 𝑥) ∼−→ C(𝑦,𝑦), C(𝑥, 𝑥) ∼−→ C(𝑥,𝑦).

The fibre of the first map at id𝑦 is then contractible, so there exists 𝑔 : 𝑦 → 𝑥 and
an equivalence 𝑔𝑓 ≃ id𝑦 . The fibre of the second map at 𝑓 is then contractible,
and contains both id𝑥 and 𝑓 𝑔, so we must also have an equivalence 𝑓 𝑔 ≃ id𝑥 .
We can then use this data to extend 𝑓 , viewed as a map [1] → C, to a functor
𝐸 → C, so that 𝑓 is an equivalence in the sense of being in the image of the
degeneracy map C≃ → C[1]. □

Corollary 2.9.7. An ∞-category C is an ∞-groupoid if and only if every morphism
in C is an equivalence.

Proof. Since the degeneracy C[0] ↩→ C[1] is a monomorphism, it is an equiva-
lence if and only if it is also surjective on 𝜋0, which means precisely that every
morphism in C is an equivalence. □

Proposition 2.9.8. For ∞-categories C,D, a morphism in Fun(C,D) is an equiva-
lence if and only if its component at every [𝑐] ∈ 𝜋0C

≃ is an equivalence in D.

Proof. We can identify the degeneracy Fun(C,D) → Ar(Fun(C,D)) with the
functor Fun(C,D) → Fun(C, Ar(D)) given by composing with the degeneracy
of D. The image of this fully faithful functor admits the desired description by
Lemma 2.8.6. □

Exercise 2.18. Show that if C′ → C is essentially surjective, then

Fun(C,D) → Fun(C′,D)

is conservative.

2.10 Monomorphisms of ∞-categories

Definition 2.10.1. A functor of ∞-categories C→ D is a monomorphism if the
commutative square

C D

C × C D ×D

is a pullback.

Exercise 2.19. Show that the following are equivalent for 𝐹 : C→ D:

(1) 𝐹 is a monomorphism.

(2) 𝐹 ( [𝑖]) : C( [𝑖]) → C( [𝑖]) is a monomorphism of ∞-groupoids for 𝑖 = 0, 1.
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(3) 𝐹 is right orthogonal to [𝑖] ⨿ [𝑖] → [𝑖] for 𝑖 = 0, 1.

Exercise 2.20. Use Exercise 2.8 to show that 𝐹 : C → D is a monomorphism if and
only if 𝐹≃ : C≃ → D≃ and C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦) are monomorphisms for all 𝑥,𝑦 ∈ C.

Observation 2.10.2. Since Fun(A, –) preserves pullbacks, ifC→ D is a monomor-
phism, then so is Fun(A,C) → Fun(A,D).

Observation 2.10.3. We have a commutative diagram

[0] ⨿ [0] [1] ⨿ [1] [0] ⨿ [0]

[0] [1] [0],

where the horizontal maps in the left square are given by taking the same object
of [1] three times. The horizontal composites are both identities, so this shows
that the fold map of [0] is a retract of that for [1]. Applying Lemma 2.4.9, this
means that a functor of ∞-categories is a monomorphism if and only if it is
right orthogonal to [1] ⨿ [1] → [1].

Lemma 2.10.4. Monomorphisms are conservative, i.e. if 𝐹 : C → D is a monomor-
phism, then we have a pullback square

C[0] D[0]

C[1] D[1] .

Proof. Consider the diagram

[1] [0]

[1] ⨿ [1] [0] ⨿ [1]

[1] [0] .

Here the top and composite squares are pushouts, hence so is the bottom square,
so a monomorphism is right orthogonal to the map [0]⨿[1] → [0] by Lemma 2.4.7.
But [1] → [0] is a retract of this, hence a monomorphism is right orthogonal
to it by Lemma 2.4.9. □

Lemma 2.10.5. Fully faithful functors are monomorphisms.
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Proof. Suppose 𝐹 is fully faithful. We saw in Corollary 2.7.3 that 𝐹 is then right
orthogonal to [0] ⨿ [0] → [0], and it remains to show that it is also right
orthogonal to [1] ⨿ [1] → [1]. For this we consider the commutative square

[0]⨿4 [1] ⨿ [1]

[0]⨿2 [1] .

Here we see that 𝐹 is right orthogonal to the left vertical map since this is a
coproduct of two copies of the fold map of [0], and right orthogonal to the top
horizontal map for the same reason. It follows by Lemma 2.4.5 that 𝐹 is also
right orthogonal to the right vertical map. □

2.11 Subcategories

Fact 2.11.1. Let C be an ∞-category and 𝑖1 : 𝑋1 ↩→ Map( [1],C) a monomorphism
of ∞-groupoids. Define 𝑋0 by the pullback

𝑋0 C≃

𝑋1 Map( [1],C)

𝑖0

𝑠0

𝑖1

and suppose the monomorphisms 𝑖0, 𝑖1 satisfy the following properties5:
▶ the source and target of the morphisms in 𝑋1 lie in 𝑋0, i.e. the composites

𝑋1 ↩→ Map( [1],C) 𝑑𝑖−→ C≃

factor through 𝑋0

▶ the morphisms in 𝑋1 are closed under composition, i.e. the composite

𝑋1 ×𝑋0 𝑋1 ↩→ Map( [1],C) ×C≃ Map( [1],C) ≃ Map( [2],C)
𝑑1−→ Map( [1],C)

factors through 𝑋1.
Then there exists a functor of∞-categories 𝚤 : 𝑖∗C→ C such that Map( [1], 𝚤) ≃ 𝑖1, and
for any ∞-category D, the commutative square

Map(D, 𝑖∗C) Map(D,C)

Map(D( [1]), 𝑋1) Map(D( [1]),C( [1]))

is a pullback. We refer to 𝑖∗C as the subcategory determined by the morphisms in 𝑋1.
5Note that all properties can be checked on 𝜋0, since this detects factorizations through

monomorphisms.
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Warning 2.11.2. Our subcategories are always replete, that is they contain all
equivalences among their objects. (Indeed, weaker notions of subcategory are
not invariant under equivalence of ∞-categories, and so do not really make
sense except in some model of (∞-)categories — note that this is already true
for ordinary categories.)

Observation 2.11.3. Taking D = [0] in this square, we get a pullback square

(𝑖∗C)≃ C≃

𝑋1 C( [1]),

so that (𝑖∗C)≃ is 𝑋0. In particular, 𝚤 is a monomorphism.

Lemma 2.11.4. Given an∞-category C and a monomorphism 𝑖0 : 𝑋0 → C≃, we can
define 𝑋1 by the pullback

𝑋1 C( [1])

𝑋0 × 𝑋0 C≃ × C≃.

𝑖1

𝑖0×𝑖0

Then the resulting monomorphism 𝚤 : 𝑖∗C → C is the fully faithful functor associated
to the inclusion 𝑖0 in Fact 2.11.1.

Proof. First consider the commutative diagram

𝑋0 C≃

𝑋1 C[1]

𝑋0 × 𝑋0 C≃ × C≃.

𝑖1

Here the bottom and composite squares are pullbacks (since 𝑖0 is a monomor-
phism), hence so is the top square. This shows that 𝚤 is given by 𝑖0 on cores.
Moreover, since 𝚤 is given by 𝑖1 on Map( [1], –), the bottom square then shows
that 𝚤 is fully faithful. Since full subcategories are uniquely determined by their
objects, the functor 𝚤 must necessarily be the fully faithful functor correspond-
ing to the monomorphism 𝑖0. □

Lemma 2.11.5. Suppose 𝐹 : C′ → C is a monomorphism, and let

𝑖1 := 𝐹 ( [1]) : C′ [1] → C[1] .

Then 𝐹 ≃ 𝚤.
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Proof. We get a factorization of 𝐹 as C′
𝐹 ′−→ 𝑖∗C

𝚤−→ C such that 𝐹 ′ [1] ≃ idC′ [1] .
Moreover, 𝐹 ′ is a monomorphism, so 𝐹 ′ [0] is also an equivalence by Lemma 2.10.4.
Thus 𝐹 ′ is an equivalence. □

Observation 2.11.6. It follows that a monomorphism of∞-categories 𝑗 : C′ →
C is uniquely determined by a subset 𝑆 of 𝜋0C[1] such that 𝑆 is closed under
composition and contains the identity morphisms on the source and target of
each of its elements. We refer to C′ as the subcategory of C generated by the
morphisms in 𝑆 .

Example 2.11.7. It follows from Corollary 2.9.5 that the canonical map C≃ → C

is always a monomorphism, and gives the subcategory of C that contains only
the equivalences.

Lemma 2.11.8. Suppose 𝑗 : C′ → C is the inclusion of the subcategory generated
by 𝑆 ⊆ 𝜋0C[1] . Then 𝑗∗ : Fun(D,C′) → Fun(D,C) exhibits Fun(D,C′) as the
subcategory generated by the natural transformations whose components at all objects in
D lie in 𝑆 .

Proof. We have a commutative diagram

Map(D × [1],C′) Map(D × [1],C)

Map(D[1] × [1] [1],C′ [1]) Map(D[1] × [1] [1],C[1])

Hom(𝜋0(D[1]) × [1] [1], 𝑆) Hom(𝜋0(D[1]) × [1] [1], 𝜋0(C[1]))

where both squares are pullbacks. This says precisely that a natural transfor-
mation factors through C′ precisely when its components lie in 𝑆 and its source
and target send all morphisms in D to 𝑆 . □

51



Chapter 3

Fibrations

3.1 Why fibrations?

One of the key differences between ordinary category theory and∞-category
theory is that we can’t “just write down” a functor between ∞-categories: this
requires specifying an infinite number of coherences, and in practice this is usu-
ally impossible (also when we work in a model like quasicategories). The theory
of fibrations, which for ordinary categories goes back to work of Grothendieck
in the 60s, therefore plays a far more prominent role in the theory of ∞-
categories than for ordinary categories: This theory provides an identification,
the straightening equivalence, between functors from an∞-category B to the∞-
categories of (small)∞-groupoids and∞-categories with certain classes of func-
tors to B (the aforementioned fibrations), and defining and manipulating such
fibrations often gives us the only way to construct important functors among
∞-categories.

The simplest case of this phenomenon is the identification between the over-
category Set/𝑆 for a set 𝑆 and the functor category Fun(𝑆, Set), given by the
functors

(𝐸 → 𝑆) ↦→ (𝑠 ∈ 𝑆 ↦→ 𝐸𝑠),
(𝐹 : 𝑆 → Set) ↦→ (

∐
𝑠∈𝑆

𝐹 (𝑠) → 𝑆) .

If we write Gpd∞ for the∞-category of (small)∞-groupoids, this extends to an
equivalence

Gpd∞/𝑋 ≃ Fun(𝑋,Gpd∞),
under which a functor from 𝑋 corresponds to its colimit.

More generally, we will see that the ∞-categories of functors B → Gpd∞
and Bop → Gpd∞ can be identified with certain full subcategories of Cat∞/B,
whose objects are the left and right fibrations over B.

If Cat∞ is the ∞-category of (small) ∞-categories, we will similarly iden-
tify Fun(B, Cat∞) and Fun(Bop, Cat∞) with certain (non-full) subcategories of
Cat∞/B, whose objects are the cocartesian and cartesian fibrations over B.
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By combining these constructions we will, for example, be able to construct
the mapping ∞-groupoid functor

C(–, –) : Cop × C→ Gpd∞

out of the restriction Ar(C) → C × C.

3.2 Left and right fibrations

Definition 3.2.1. A functor of ∞-categories 𝑝 : E → B is a left fibration if it is
right orthogonal to the inclusion {0} → [1], and a right fibration if it is orthogo-
nal to {1} → [1]. Equivalently, 𝑝 is a left or right fibration if the corresponding
commutative square

Map( [1],E) Map( [1],B)

E≃ B≃

is a pullback.

Exercise 3.1. Every left/right fibration is conservative.

Observation 3.2.2. A functor 𝑝 is a left fibration if and only if 𝑝op is a right
fibration.

Lemma 3.2.3. If B is an ∞-groupoid, then a functor 𝑝 : E → B is a left/right
fibration if and only if E is an∞-groupoid. In particular, any morphism of∞-groupoids
is both a left and a right fibration.

Proof. We have a commutative diagram

E[0] B[0]

E[1] B[1]

E[0] B[0]

=

∼

=

∼

Here the top right arrow is an equivalence since B is an∞-groupoid, and so the
bottom right arrow is also an equivalence since the right vertical composite is
an identity. The bottom square is therefore a pullback if and only if the bottom
left arrow is an equivalence (Exercise 2.3). The left vertical composite is also an
identity, so this holds if and only if the top left arrow is an equivalence, which
holds precisely when E is an ∞-groupoid. □
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Proposition 3.2.4. 𝑝 is a left/right fibration if and only if the commutative square

Ar(E) Ar(B)

E B

is a pullback.

Proof. We consider the case of left fibrations, without loss of generality. The
given condition clearly implies that 𝑝 is a left fibration by passing to cores, so it
remains to show that if 𝑝 is a left fibration then we get a pullback upon applying
Map( [1], –) to the square. Here we get the square

Map( [1] × [1],E) Map( [1] × [1],B)

Map( [1],E) Map( [1],B)

where the horizontal maps are given by restriction along {0}× [1] ↩→ [1] × [1],
so it suffices to check that this is left orthogonal to all left fibrations. Using the
pushout decomposition of [1] × [1], we can identify this as the map on pushouts
in the diagram

{0 < 1} {0} {0}

[2] [1] [2],

so by Lemma 2.4.6 it suffices to check that the maps {0 → 1} → [2] and
{0} → [2] are left orthogonal to left fibrations. For the former this follows
from decomposing it as the map on pushouts in

[1] [0] {0}

[1] [0] [1],

and applying Lemma 2.4.6 again, while the latter is the composition

{0} ↩→ {0 < 1} → [2],

so this follows from Lemma 2.4.5. □

Corollary 3.2.5. If 𝑝 : E → B is a left/right fibration, then so is 𝑝∗ : Fun(C,E) →
Fun(C,B) for any ∞-category C.
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Proof. We must show that a commutative square of the form

Ar(Fun(C,E)) Ar(Fun(C,B))

Fun(C,E) Fun(C,B)

is a pullback. But we can rewrite this as

Fun(C, Ar(E)) Fun(C, Ar(B))

Fun(C,E) Fun(C,B),

and Fun(C, –) preserves pullbacks. □

Proposition 3.2.6. The following are equivalent for a left (or right) fibration 𝑝 : E→
B:

(1) 𝑝 is an equivalence.

(2) The map on cores 𝑝≃ : E≃ → B≃ is an equivalence of ∞-groupoids.

(3) The fibre E𝑏 is contractible for every 𝑏 ∈ B.

Proof. By assumption we have a pullback square

Map( [1],E) Map( [1],B)

E≃ B≃,

so if 𝑝 gives an equivalence on cores it also gives an equivalence on Map( [1], –)
and so is an equivalence of ∞-categories (Fact 2.3.11). Moreover, we have a
pullback square

E≃ E

B≃ B

by combining Exercise 2.13 and Exercise 3.1. Therefore E𝑏 is also the fibre of
𝑝≃ at 𝑏, so if these∞-groupoids are all contractible then 𝑝≃ is an equivalence by
Proposition 2.1.22. □

Observation 3.2.7. Given a commutative triangle

E F

B

𝐹

𝑝 𝑞
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where 𝑝 and 𝑞 are both left (or both right) fibrations, then so is 𝐹 — this follows
from the dual of Lemma 2.4.5.

Corollary 3.2.8. Suppose given a commutative triangle

E F

B

𝐹

𝑝 𝑞

where 𝑝 and 𝑞 are both left (or both right) fibrations. Then the following are equivalent:

(1) 𝐹 is an equivalence.

(2) The underlying map of ∞-groupoids E≃ → F≃ is an equivalence.

(3) The functor on fibres E𝑏 → F𝑏 is an equivalence for all 𝑏 ∈ B.

Proof. The functor 𝐹 is a left (or right) fibration by Observation 3.2.7, so the
equivalence of the first two conditions follows from Observation 3.2.7. Since
the fibres of 𝑝 and 𝑞 are the same as those of 𝑝≃ and 𝑞≃, respectively, we can
apply Exercise 2.2 to the triangle

E≃ F≃

B≃
𝑝 𝑞

to see that the last two conditions are equivalent. □

Exercise 3.2. Show that a commutative square

E F

B C

𝑝 𝑞

𝐹

where 𝑝 and 𝑞 are both left (or both right) fibrations is a pullback if and only if the
induced map on fibres E𝑏 → F𝐹 (𝑏 ) is an equivalence of ∞-groupoids for all 𝑏 ∈ B.

3.3 Slices and cones

In this section we define over- and undercategories of an∞-category, and show
that these give left and right fibrations.
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Definition 3.3.1. For an object 𝑐 ∈ C we define the overcategory C/𝑐 as the
pullback

C/𝑐 Ar(C)

{𝑐} C;

ev1

the functor ev0 pulls back to a functor C/𝑐 → C. Dually, we define the under-
category C𝑐/ by pulling back ev0; then ev1 gives a functor C𝑐/ → C. (We refer to
over- and undercategories jointly as slice ∞-categories.)

Observation 3.3.2. Suppose 𝑋 is an ∞-groupoid. Then the slice 𝑋/𝑥 is con-
tractible for any 𝑥 ∈ 𝑋 , since in the pullback square

𝑋/𝑥 Ar(𝑋 )

{𝑥} 𝑋,

ev1

the right vertical arrow is an equivalence (since it is a one-sided inverse of the
degeneracy 𝑋

∼−→ Ar(𝑋 )). Similarly, 𝑋𝑥/ ≃ ∗.

We can describe maps to slice∞-categories in terms of cones, in the follow-
ing sense:

Definition 3.3.3. For an∞-category K, the left cone K⊳ and right cone K⊲ on K

are defined by the pushouts

K⊳ := {−∞} ⨿K×{0} K × [1],

K⊲ := K × [1] ⨿K×{1} {∞}.

The cone point is the object ±∞.

Remark 3.3.4. It can be shown (e.g. using quasicategories) that cores and map-
ping spaces in the cone K⊳ are given by

(K⊳)≃ ≃ {−∞} ⨿K≃,

K⊳ (𝑥,𝑦) ≃

∅, 𝑥 ∈ K, 𝑦 ≃ −∞,
∗, 𝑥 ≃ −∞,
K(𝑥,𝑦), 𝑥,𝑦 ∈ K.

Lemma 3.3.5. For ∞-categories K and C and an object 𝑥 in C, there are natural
equivalences

Fun(K,C/𝑥 ) ≃ Fun(K⊲,C) ×Fun({∞},C) {𝑥},

Fun(K,C𝑥/) ≃ Fun(K⊳,C) ×Fun({−∞},C) {𝑥}.
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Proof. We prove the first case. By definition of C/𝑥 and K⊲, we have pullback
squares

Fun(K,C/𝑥 ) Fun(K × [1],C)

{𝑥} Fun(K × {1},C)

⌟
Fun(K⊲,C) Fun(K × [1],C)

Fun({∞},C) Fun(K × {1},C).

⌟

The factorization {𝑥} → Fun({∞},C) → Fun(K × {1},C) in the bottom row
therefore induces a commutative diagram

Fun(K,C/𝑥 ) Fun(K⊲,C) Fun(K × [1],C)

{𝑥} Fun({∞},C) Fun(K × {1},C),

where the left square is a pullback by the 3-for-2 property, as required. □

Observation 3.3.6. The pushout decompositions of [1] × [1] and [2] imply
that we have a pushout

[1] × {1} [1] × [1]

[0] [2],

so that [1]⊲ ≃ [2] with the inclusion of [1] corresponding to 𝑑2; similarly,
[1]⊳ ≃ [2] (with the inclusion of [1] given by 𝑑0).

Proposition 3.3.7. We have pullback squares

Ar(C/𝑐) Fun( [2],C)

C/𝑐 Fun({1 < 2},C)

𝑡

Ar(C𝑐/) Fun( [2],C)

C𝑐/ Fun({0 < 1},C) .

𝑠

Proof. We prove the first case. Combining Observation 3.3.6 with Lemma 3.3.5,
we get a pullback square

Ar(C/𝑐) Fun( [2],C)

{𝑐} Fun({2},C) .
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Using that the equivalence from 3.3.5 is natural in K, we get a factorization of
this square as

Ar(C/𝑐) Fun( [2],C)

C/𝑐 Fun({1 < 2},C)

{𝑐} Fun({2},C)

𝑡

where also the bottom square is a pullback. The top square is then a pullback
by the 3-for-2 property, as required. □

Exercise 3.3. Show that more generally, we have equivalences

[𝑛]⊳ ≃ [𝑛 + 1] ≃ [𝑛]⊲ .

Corollary 3.3.8. For 𝑐 ∈ C, C/𝑐 → C is a right fibration and C𝑐/ → C is a left
fibration.

Proof. We prove the first case — the second follows similarly, or by observing
that (C𝑐/)op ≃ (Cop)/𝑐 and using Observation 3.2.2. Informally, we want to say
that a morphism in C/𝑐 is a commutative triangle

𝑥 𝑦

𝑐,

𝑓

𝑝 𝑞

and the forgetful functor to C takes this to the horizontal morphism 𝑓 ; the

condition for being a right fibration says that given 𝑥
𝑓
−→ 𝑦 and the object 𝑦

𝑞
−→ 𝑐

in C/𝑐 , there is a unique morphism in C/𝑐 lifting 𝑓 with target 𝑞, which follows
from the uniqueness of the composite 𝑝.

Using Proposition 3.3.7, we have a commutative diagram

Map( [1],C/𝑐) Map( [2],C) Map({0 < 1},C)

(C/𝑐)≃ Map({1 < 2},C) Map({1},C)

where the left square is a pullback. The right square is also a pullback by the Se-
gal decomposition of [2]. The composite square is therefore a pullback, which
says precisely that C/𝑐 → C is a right fibration. □

Corollary 3.3.9. For a morphism 𝑓 : 𝑥 → 𝑦 in an ∞-category C, we have equiva-
lences

(C/𝑦)/𝑓
∼−→ C/𝑥 ,
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(C𝑥/)𝑓 /
∼−→ C𝑦/,

under which the forgetful functors to C/𝑦 and C𝑥/ correspond to the functor given by
composition with 𝑓 .

Proof. We prove the first case. Here we have a commutative diagram

(C/𝑦)/𝑓 Ar(C/𝑦) Fun( [2],C) Fun({0 < 1},C)

{𝑓 } C/𝑦 Fun({1 < 2},C) Fun({1},C),

𝑡

where all three squares are pullbacks: the left square by definition, the middle
square by Proposition 3.3.7, and the right square by the Segal decomposition of
[2]. It follows that the composite square is a pullback, but the bottom horizontal
composite picks out 𝑥 ∈ C, so this pullback is also C/𝑥 , as required. □

Finally, we note that we can reformulate the definition of left fibrations in
terms of slices, which will sometimes be useful:

Lemma 3.3.10. A functor 𝑝 : E→ B is a left fibration if and only if for every 𝑥 ∈ E,
the induced functor E𝑥/ → B𝑝 (𝑥 )/ is an equivalence.

Proof. If 𝑝 is a left fibration, then by Proposition 3.2.4, the commutative square

Ar(E) Ar(B)

E B

ev0 ev0

is a pullback. The map on fibres over 𝑥 ∈ E is precisely E𝑥/ → B𝑝 (𝑥 )/, which is
therefore an equivalence. Conversely, if these functors are equivalences, then
the maps on fibres in the square

E[1] B[1]

E≃ B≃

ev0 ev0

are equivalences of∞-groupoids, so this is a pullback, i.e. 𝑝 is a left fibration. □

3.4 Straightening for left and right fibrations

Suppose 𝑝 : E→ B is a left fibration. Then 𝑝 is supposed to determine a functor
from B to ∞-groupoids; let’s see how the basic data of such a functor follows
from the definition of left fibrations:
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▶ First consider the commutative diagram

E[0] E[1] E[0]

B[0] B[1] B[0],

𝑠 𝑡

𝑠 𝑡

where the left square is a pullback since 𝑝 is a left fibration. On fibres over
a morphism 𝑓 : 𝑏 → 𝑏′ in E, we get

E𝑏
∼←− E[1] 𝑓 → E𝑏′,

which (inverting the equivalence) we can think of as a functor 𝑓! : E𝑏 →
E𝑏′ .

▶ If we consider the identity map id𝑏 , we have a commutative diagram

E[0]

E[0] E[1] E[0] .

= =

𝑠 𝑡

On fibres, we get

E𝑏

E𝑏 E[1]id𝑏 E𝑏,

= =

∼

which shows that (id𝑏)! is (homotopic to) the identity of E𝑏 .

▶ For two composable maps 𝑓 : 𝑏 → 𝑏′, 𝑔 : 𝑏′ → 𝑏′′ we can consider fibres in
the diagram

E[1]

E[2]

E[1] E[1]

E[0] E[0] E[0],

𝑠 𝑡

𝑑1

𝑠 𝑡 𝑠 𝑡
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where the middle square is a pullback. This produces the diagram

E[1]𝑔𝑓

E[2]𝑔,𝑓

E[1] 𝑓 E[1]𝑔

E𝑏 E𝑏′ E𝑏′′,

∼

∼

∼

∼ ∼

which gives a homotopy
(𝑔𝑓 )! ≃ 𝑔! 𝑓!.

Exercise 3.4. Check that dually, a right fibration E → B gives the basic data for a
contravariant functor from Bop to ∞-groupoids.

Fact 3.4.1. There is a (large) ∞-category Cat∞ of (small) ∞-categories; we write
Gpd∞ for the full subcategory of this spanned by the ∞-groupoids.

Definition 3.4.2. For an ∞-category B, let LFib(B) and RFib(B) denote the
full subcategories of Cat∞/B on the left and right fibrations, respectively.

Theorem 3.4.3 (Lurie). For an ∞-category B, there is an equivalence

StrL
B : LFib(B) ∼−→ Fun(B,Gpd∞),

called the straightening equivalence for left fibrations. This is moreover natural in B

with respect to precomposition of functors and pullback of fibrations.

Here the naturality means that if a fibration 𝑝 : E → B straightens to a
functor 𝐹 : B→ Gpd∞, and we have a pullback square

F E

C B,

𝑞
⌟

𝑝

𝜙

then the left fibration 𝑞 straightens to 𝐹 ◦ 𝜙 .

Observation 3.4.4. Taking opposite∞-categories gives an equivalence (–)op : Cat∞ →
Cat∞. This induces an equivalence on slices

Cat∞/B
(–)op

−−−−→ Cat∞/Bop,
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which restricts to an equivalence

RFib(B) ≃ LFib(Bop).

Combining this with the straightening equivalence from Theorem 3.4.3, we
get a straightening equivalence

StrR
B : RFib(B)

(–)op

−−−−→ LFib(Bop)
StrL

Bop
−−−−−→ Fun(Bop,Gpd∞)

for right fibrations.

Remark 3.4.5. We are going to treat the straightening theorem as a black box,
and will not go into the proof (which almost certainly needs to be done in some
model to avoid circularity). However, we’ll try to say a few words about the
proof in the simplest case, where the base is [1]. Here the straightening of a left
fibration E→ [1] is (as we saw above) the functor

E0
∼←− Map/[1] ( [1]E) → E1

given by restricting a section to the two objects of [1]. There is a formal dual
to this construction, which takes a span

𝐴← 𝑋 → 𝐵

of ∞-groupoids to the pushout 𝐴 ⨿𝑋×{0} (𝑋 × [1]) ⨿𝑋×{1} 𝐵. To see that this
gives an inverse to straightening, we need to understand (a special case of ) this
pushout. This is in fact possible (in a model), but I’m not sure what the best
“axioms” are to understand this in a model-independent setting.

3.5 Cartesian and cocartesian fibrations

We now want to introduce (co)cartesian fibration, which can be thought of as
generalizing left and right fibrations by allowing the fibres to be ∞-categories
instead of ∞-groupoids. These will not be defined using orthogonality1, but
via the existence of sufficiently many (co)cartesian morphisms, and we start by
introducing this notion.

Exercise 3.5. Given a functor 𝑝 : E→ B and a morphism 𝑓 : 𝑥 → 𝑦 in E, show that for
an object 𝑧 ∈ E we get commutative squares

E(𝑦, 𝑧) E(𝑥, 𝑧)

B(𝑝𝑦, 𝑝𝑧) B(𝑝𝑥, 𝑝𝑧)

𝑓 ∗

𝑝 (𝑓 )∗

E(𝑧, 𝑥) E(𝑧,𝑦)

B(𝑝𝑧, 𝑝𝑥) B(𝑝𝑧, 𝑝𝑦)

𝑓∗

𝑝 (𝑓 )∗

1This is not possible using just ∞-categories, but can be done in the ∞-category of marked
∞-categories, meaning ∞-categories with a chosen collection of morphisms.
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by taking appropriate fibres in a cube with top face

E[2] E[1]

B[2] B[1] .

𝑑1

𝑑1

Similarly, we get

E𝑦/ E𝑥/

B𝑝𝑦/ B𝑝𝑥/

𝑓 ∗

𝑝 (𝑓 )∗

E/𝑥 E/𝑦

B/𝑝𝑥 B/𝑝𝑦

𝑓∗

𝑝 (𝑓 )∗

by taking fibres in similar cubes of ∞-categories.

Definition 3.5.1. Given a functor 𝑝 : E→ B, we say a morphism 𝑓 : 𝑥 → 𝑦 in
E is 𝑝-cocartesian if for every object 𝑧 ∈ E, the commutative square

E(𝑦, 𝑧) E(𝑥, 𝑧)

B(𝑝𝑦, 𝑝𝑧) B(𝑝𝑥, 𝑝𝑧)

𝑓 ∗

𝑝 (𝑓 )∗

is a pullback. Dually, we say that 𝑓 is 𝑝-cartesian if all squares

E(𝑧, 𝑥) E(𝑧,𝑦)

B(𝑝𝑧, 𝑝𝑥) B(𝑝𝑧, 𝑝𝑦)

𝑓∗

𝑝 (𝑓 )∗

are pullbacks.

Remark 3.5.2. Informally, a morphism 𝑓 : 𝑥 → 𝑦 is 𝑝-cocartesian if given
𝑔 : 𝑥 → 𝑧 and a factorization

𝑝 (𝑥) 𝑝 (𝑧)

𝑝 (𝑦),

𝑝 (𝑔)

𝑝 (𝑓 )
𝜙

there exists a unique lift of this triangle to a factorization

𝑥 𝑧

𝑦,

𝑔

𝑓

of 𝑔 through 𝑓 .
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Exercise 3.6. Show that a morphism 𝑓 is 𝑝-cocartesian if and only if the commutative
square

E𝑦/ E𝑥/

B𝑝𝑦/ B𝑝𝑥/

𝑓 ∗

𝑝 (𝑓 )∗

is a pullback.

Lemma 3.5.3. If 𝑓 : 𝑥 → 𝑦 is 𝑝-cocartesian, then a morphism 𝑔 : 𝑦 → 𝑧 is 𝑝-
cocartesian if and only if 𝑔 ◦ 𝑓 is 𝑝-cocartesian.

Proof. For 𝑤 ∈ E, we consider the commutative diagram

E(𝑧,𝑤) E(𝑦,𝑤) E(𝑥,𝑤)

B(𝑝𝑧, 𝑝𝑤) B(𝑝𝑦, 𝑝𝑤) B(𝑝𝑥, 𝑝𝑤) .

𝑔∗ 𝑓 ∗

𝑝 (𝑔)∗ 𝑝 (𝑓 )∗

Here the right square is a pullback, so the left square is a pullback if and only if
the composite square is so. □

Definition 3.5.4. Given a morphism 𝑓 : 𝑎 → 𝑏 in B and an object 𝑥 ∈ E with
𝑝 (𝑥) ≃ 𝑎, a 𝑝-cocartesian lift of 𝑓 to 𝑥 is a 𝑝-cocartesian morphism 𝑓 : 𝑥 → 𝑦 such
that 𝑝 (𝑓 ) ≃ 𝑓 . More precisely, it is a lift in the commutative square

{0} E

[1] B

𝑥

𝑝

𝑓

𝑓

such that 𝑓 is 𝑝-cocartesian. Dually, we define 𝑝-cartesian lifts of 𝑓 to 𝑦 with
𝑝 (𝑦) ≃ 𝑏.

Lemma 3.5.5. Suppose 𝑓 : 𝑎 → 𝑏 is an equivalence in B. Then a commutative
diagram

{0} E

[1] B

𝑥

𝑝

𝑓

𝑓

gives a 𝑝-cocartesian lift of 𝑓 if and only if 𝑓 is an equivalence.
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Proof. Since 𝑓 is an equivalence, the bottom horizontal map in the commutative
square

E(𝑦, 𝑧) E(𝑥, 𝑧)

B(𝑝𝑦, 𝑝𝑧) B(𝑝𝑥, 𝑝𝑧)

𝑓 ∗

𝑓 ∗

is an equivalence. The square is therefore a pullback if and only if the top hor-
izontal morphism is an equivalence by Exercise 2.3. This holds for all 𝑧 ∈ E if
and only if 𝑓 is an equivalence in E by Lemma 2.9.6. □

Lemma 3.5.6. Let E[1]coct denote the subspace of E[1] spanned by the cocartesian
morphisms. Then the morphism

E[1]coct → B[1] ×B≃ E≃

induced by restricting along {0} ↩→ [1] is a monomorphism, with image the pairs
(𝑎 → 𝑏, 𝑥, 𝑝 (𝑥) ≃ 𝑎) for which a cocartesian lift exists.

Proof. We must show that if there exists a cocartesian lift 𝑓 : 𝑥 → 𝑦 of 𝑓 : 𝑎 → 𝑏

with source 𝑥 , then the fibre over (𝑓 , 𝑥, 𝑝 (𝑥) ≃ 𝑎) is contractible. We may iden-
tify this fibre as the subspace of (E𝑥/)≃ ×(B𝑎/ )≃ {𝑓 } spanned by the cocartesian
lifts of 𝑓 . By Exercise 3.6, composition with 𝑓 identifies the larger space with
the pullback

(E𝑦/)≃ ×(B𝑏/ )≃ {id𝑏} ≃ (E𝑏,𝑦/)
≃.

It follows from Lemma 3.5.3 that under this equivalence the subspace of cocarte-
sian lifts of 𝑓 corresponds to that of cocartesian lifts of id𝑏 , which by Lemma 3.5.5
is the subspace (E≃

𝑏
)𝑦/ of equivalences out of 𝑦. This completes the proof, since

the latter ∞-groupoid is contractible by Observation 3.3.2. □

Definition 3.5.7. For a functor 𝑝 : E → B, we say that E has 𝑝-cocartesian lifts
of a class 𝑆 of morphisms in B if for any morphism 𝑓 : 𝑎 → 𝑏 in 𝑆 and 𝑥 ∈ E

with 𝑝 (𝑥) ≃ 𝑎, there exists a 𝑝-cocartesian lift of 𝑓 to 𝑥 . Dually, we can ask for
E to have 𝑝-cartesian lifts of 𝑆 . We say that 𝑝 is a (co)cartesian fibration if E has
𝑝-(co)cartesian lifts of all morphisms in B.

Observation 3.5.8. 𝑝 is a cocartesian fibration if and only if the monomorphism

E[1]coct → B[1] ×B≃ E≃

is an equivalence.

We next want to characterize left fibrations as a particular class of cocartesian
fibrations.
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Proposition 3.5.9. Suppose 𝑝 : E → B is a left fibration. Then every morphism
in E is 𝑝-cocartesian. Dually, if 𝑝 is a right fibration, then every morphism in E is
𝑝-cartesian.

Proof. We prove the first statement. If 𝑝 is a left fibration, then E𝑥/ → B𝑝𝑥/
is an equivalence by Lemma 3.3.10. For any morphism 𝑓 : 𝑥 → 𝑦, the vertical
morphisms in the commutative square

E𝑦/ E𝑥/

B𝑝𝑦/ B𝑝𝑥/

𝑓 ∗

∼ ∼

𝑝 (𝑓 )∗

are therefore equivalences. This means the square is a pullback by Exercise 2.3,
so 𝑓 is 𝑝-cocartesian by Exercise 3.6. □

Corollary 3.5.10. Left fibrations are cocartesian fibrations, and right fibrations are
cartesian fibrations.

Corollary 3.5.11. Suppose 𝑝 : E → B is a cocartesian fibration. Then the following
are equivalent:

(1) 𝑝 is a left fibration.

(2) Every morphism in E is 𝑝-cocartesian.

(3) 𝑝 is conservative.

(4) The fibres of 𝑝 are ∞-groupoids.

Proof. We have already seen that (1) implies (2). Conversely, if every morphism
in E is 𝑝-cocartesian, then Observation 3.5.8 implies that 𝑝 is a left fibration. By
Lemma 3.5.5 we know that a morphism is 𝑝-cocartesian over an equivalence if
and only if it is itself an equivalence, so (2) implies (3). Conversely, since 𝑝 is
a cocartesian fibration, any morphism in E factors (uniquely) as a cocartesian
morphism followed by a morphism over an equivalence; if (3) holds the latter
is an equivalence. But an equivalence is 𝑝-cocartesian and 𝑝-cocartesian mor-
phisms compose by Lemma 3.5.3, so this implies (2). We also know that (3) is
equivalent to (4) from Exercise 2.13. □

Definition 3.5.12. A morphism of cocartesian fibrations is a commutative square

E E′

B B′

𝐹

𝑝 𝑝′

𝐺
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where 𝑝 and 𝑝′ are cocartesian fibrations and 𝐹 takes 𝑝-cocartesian morphisms
to 𝑝′-cocartesian ones. For 𝐺 = id𝐵 we say this is a morphism of cocartesian
fibrations over B.

Observation 3.5.13. Given 𝑝 : E → B and a 𝑝-cocartesian lift 𝑓 : 𝑥 → 𝑦 of
𝑓 : 𝑎 → 𝑏, we have in particular for 𝑧 ∈ E𝑏 a pullback square

E(𝑦, 𝑧) E(𝑥, 𝑧)

B(𝑏,𝑏) B(𝑎, 𝑏) .

𝑓 ∗

𝑝 (𝑓 )∗

Taking the fibre at id𝑏 this gives an equivalence

E𝑏 (𝑦, 𝑧)
∼−→ E(𝑥, 𝑧)𝑓 .

Proposition 3.5.14. If
E F

B

𝐹

𝑝 𝑞

is a morphism of cocartesian fibrations over B, then 𝐹 is an equivalence if and only if
𝐹𝑏 : E𝑏 → F𝑏 is an equivalence for all 𝑏 ∈ B.

Proof. It is clear that if 𝐹 is an equivalence then it gives an equivalence on fibres,
so it remains to see that the latter condition implies that 𝐹 is an equivalence.
Since (–)≃ preserves pullbacks, we know that the morphisms on fibres in the
commutative triangle

E≃ F≃

B≃

are equivalences of ∞-categories, so 𝐹≃ is an equivalence by Exercise 2.2. By
Observation 2.7.5 it then suffices to check that 𝐹 is fully faithful. (Alternatively,
we can observe that 𝐹 is essentially surjective, since every object must lie in
some fibre, and use Corollary 2.7.6.)

We will prove that 𝐹 is fully faithful by seeing that we get an equivalence
on fibres in the triangle

E(𝑥,𝑦) F(𝐹𝑥, 𝐹𝑦)

B(𝑎, 𝑏)
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for 𝑥,𝑦 ∈ E lying over 𝑎, 𝑏 ∈ B. For 𝑓 : 𝑎 → 𝑏, we choose a 𝑝-cocartesian lift
𝑓 : 𝑥 → 𝑥 ′ of 𝑓 at 𝑥 ; then by assumption 𝐹 (𝑓 ) is a 𝑞-cocartesian lift of 𝑓 at 𝐹 (𝑥).
In the commutative diagram

E(𝑥 ′, 𝑦) E(𝑥,𝑦)

F(𝐹𝑥 ′, 𝐹𝑦) F(𝐹𝑥, 𝐹𝑦)

B(𝑏, 𝑏) B(𝑎, 𝑏),

𝑓 ∗

𝐹 (𝑓 )∗

𝑓 ∗

the bottom and composite squares are therefore pullbacks, hence so is the top
square. Taking fibres at id𝑏 we therefore get a commutative square

E𝑏 (𝑥 ′, 𝑦) E(𝑥,𝑦)𝑓

F𝑏 (𝐹𝑥 ′, 𝐹𝑦) F(𝐹𝑥, 𝐹𝑦)𝑓 .

∼

∼

Here the left vertical map is also an equivalence by assumption, hence so is the
right vertical map, as required. □

Proposition 3.5.15. Suppose 𝑝 : E→ B is a cocartesian fibration. Given a pullback
square

E′ E

A B,

𝐺

𝑞 𝑝

𝐹

the functor 𝑞 is also a cocartesian fibration, and a morphism in E′ is 𝑞-cocartesian if and
only if its image in E is 𝑝-cocartesian.

Proof. Given a morphism 𝑓 : 𝑥 → 𝑥 ′ in E′ lifting 𝑓 : 𝑎 → 𝑏 in A and an object 𝑦
over 𝑐, we have a commutative cube

E′(𝑥 ′, 𝑦) E(𝐺𝑥 ′,𝐺𝑦)

E′(𝑥,𝑦) E(𝐺𝑥,𝐺𝑦)

A(𝑏, 𝑐) B(𝐹𝑏, 𝐹𝑐)

A(𝑎, 𝑐) B(𝐹𝑎, 𝐹𝑐)

𝑓 ∗ 𝐺 (𝑓 )∗

𝑓 ∗ 𝐹 (𝑓 )∗

Here the back and front faces are pullbacks since E′ is a pullback. If 𝐺 (𝑓 ) is
𝑝-cocartesian, the right face is also a pullback, which implies that the left face
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is a pullback by the 3-for-2 property. Thus 𝑓 is 𝑞-cocartesian if 𝐺 (𝑓 ) is 𝑝-
cocartesian. Moreover, given 𝑓 : 𝑎 → 𝑏 in A and 𝑥 over 𝑎 in E′, there exists a
𝑝-cocartesian lift of 𝐹 (𝑓 ) at 𝐺 (𝑥); this data then determines a morphism of E′
that is a 𝑞-cocartesian lift of 𝑓 at 𝑥 . Since 𝑞-cocartesian lifts are unique when
they exist by Lemma 3.5.6, it follows that all 𝑞-cocartesian morphisms must map
to 𝑝-cocartesian morphisms under 𝐺 . □

Example 3.5.16. For any ∞-category A the unique functor A→ [0] is both a
cartesian and a cocartesian fibration; the (co)cartesian morphisms are the equiv-
alences in A. It follows that for any∞-category B, the projection 𝑝 : A×B→ B

is both a cartesian and a cocartesian fibration, and a morphism is 𝑝-(co)cartesian
precisely when its image in A is an equivalence.
Exercise 3.7. Generalize Proposition 3.5.15 to show that for a commutative diagram

E F E′

B C B′

𝑝 𝑞 𝑝′

where both squares are morphisms of cocartesian fibrations, then the induced map on
pullbacks

𝑞 : E ×F E′ → B ×C B′

is a cocartesian fibration, and a morphism is 𝑞-cocartesian if and only if its images in E

and E′ are 𝑝- and 𝑝′-cocartesian.

Exercise 3.8. Use Proposition 3.5.14 and Proposition 3.5.15 to show that a morphism of
cocartesian fibrations

E E′

B B′

𝐹

𝑝 𝑝′

𝐺

is a pullback square if and only if the induced functor on fibres E𝑏 → E′
𝐺 (𝑏 ) is an

equivalence for all 𝑏 ∈ B.

3.6 Arrow ∞-categories and fibrations

In this section we will identify two important families of cocartesian fibrations,
and give a simple characterization of cocartesian fibrations. The starting point
for this is the following description of mapping spaces in Ar(C):

Proposition 3.6.1. Given morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑥 ′ → 𝑦′ in an ∞-category
C, the mapping space Ar(C) (𝑓 , 𝑔) is the pullback

Ar(C) (𝑓 , 𝑔) C(𝑥, 𝑥 ′)

C(𝑦,𝑦′) C(𝑥,𝑦′) .

⌟
𝑔∗

𝑓 ∗
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Proof. We want to identify the fibre at (𝑓 , 𝑔) of the map

Map( [1] × [1],C) → C[1]×2.

We can do this in two steps, by first identifying the map on fibres in the triangle

Map( [1] × [1],C) C[1]×2

C[0]×4

at the objects (𝑥,𝑦, 𝑥 ′, 𝑦′). Using the decompositions of [1] × [1] and [2] as
usual, we can identify this as

(C(𝑥, 𝑥 ′) × C(𝑥 ′, 𝑦′)) ×C(𝑥,𝑦′ ) (C(𝑥,𝑦) × C(𝑦,𝑦′)) → C(𝑥,𝑦) × C(𝑥 ′, 𝑦′),

with both maps to C(𝑥,𝑦′) in the pullback given by composition. Now tak-
ing the fibre of this at (𝑓 , 𝑔) produces the required description, since pullbacks
commute. □

Exercise 3.9. Extends this description to show that for a morphism 𝛼 : 𝑓 → 𝑔 in Ar(C),
given by a commutative square

𝑥 𝑧

𝑦 𝑤,

𝑒

𝑓 𝑔

ℎ

precomposition with 𝛼 fits in a commutative cube (where the left and right faces are
pullbacks)

Ar(C) (𝑔, 𝑞) Ar(C) (𝑓 , 𝑞)

C(𝑧,𝑢) C(𝑥,𝑢)

C(𝑤, 𝑣) C(𝑦, 𝑣)

C(𝑧, 𝑣) C(𝑥, 𝑣)

𝛼∗

𝑒∗

ℎ∗

𝑒∗

for 𝑞 : 𝑢 → 𝑣 .

Proposition 3.6.2. For any ∞-category C, the functor

ev1 : Ar(C) → C

is a cocartesian fibration; a morphism

𝑥 𝑧

𝑦 𝑤

𝑒

𝑓 𝑔

ℎ
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is ev1-cocartesian if and only if 𝑒 is an equivalence, i.e. the morphism is taken to an
equivalence by ev0. Dually, ev0 : Ar(C) → C is a cartesian fibration; a morphism as
above is ev0-cartesian if and only if its image under ev1 is an equivalence.

Proof. We prove the first claim; the second is proved similarly, or by taking op.
For a square of the given form with 𝑒 an equivalence, viewed as a morphism
𝛼 : 𝑓 → 𝑔 in Ar(C), composition with 𝛼 gives by Exercise 3.9 a commutative
cube

Ar(C) (𝑔, 𝑞) Ar(C) (𝑓 , 𝑞)

C(𝑧,𝑢) C(𝑥,𝑢)

C(𝑤, 𝑣) C(𝑦, 𝑣)

C(𝑧, 𝑣) C(𝑥, 𝑣),

𝛼∗

𝑒∗

ℎ∗

𝑒∗

where the left and right faces are pullbacks by Proposition 3.6.1. Since 𝑒 is an
equivalence, the horizontal morphisms in the front face are equivalences, so
that this is also a pullback by Exercise 2.3. Then the back face is also a pullback
by the 3-for-2 property, which says precisely that 𝛼 is ev1-cocartesian.

By the uniqueness of cocartesian lifts it only remains to show that given an

object 𝑥
𝑓
−→ 𝑦 of Ar(C) and a morphism 𝑦

𝑔
−→ 𝑧 in C, there exists a cocartesian lift

of the required form, which we can take to be the degenerate square

𝑥 𝑥

𝑦 𝑧,

=

𝑓 𝑔𝑓

𝑔

viewed as a morphism in Ar(C) over 𝑔 with source 𝑓 . □

Lemma 3.6.3. Given a functor 𝑝 : E → B, the following are equivalent for a mor-
phism 𝑓 : 𝑥 → 𝑦 in E over 𝑓 : 𝑎 → 𝑏 in B:

(1) The morphism 𝑓 is 𝑝-cocartesian.

(2) For every morphism 𝑔 : 𝑧 → 𝑤 in E over 𝑔 : 𝑐 → 𝑑 in B, the commutative square
of mapping ∞-groupoids

Ar(E) (𝑓 , 𝑔) E(𝑥, 𝑧)

Ar(B) (𝑓 , 𝑔) B(𝑎, 𝑐)

is a pullback.
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(3) The preceding square is a pullback whenever 𝑔 is id𝑧 for some 𝑧 ∈ E.

Proof. Since the description of mapping∞-groupoids in Proposition 3.6.1 is nat-
ural with respect to the functor 𝑝, we get a commutative cube

Ar(E) (𝑓 , 𝑔) E(𝑥, 𝑧)

E(𝑦,𝑤) E(𝑥,𝑤)

Ar(B) (𝑓 , 𝑔) B(𝑎, 𝑐)

B(𝑏, 𝑑) B(𝑎, 𝑑)

𝑔∗

𝑓 ∗

𝑔∗

𝑓 ∗

where the top and bottom faces are pullbacks. If 𝑓 is 𝑝-cocartesian, then the
front face is also a pullback, hence so is the back face by the 3-for-2 property.
Thus (1) implies (2). Since (3) is a special case of (2), it remains to check that 𝑓
is 𝑝-cocartesian if (2) holds. When 𝑔 = id𝑧 , our cube takes the form

Ar(E) (𝑓 , id𝑧) E(𝑥, 𝑧)

E(𝑦, 𝑧) E(𝑥, 𝑧)

Ar(B) (𝑓 , id𝑐) B(𝑎, 𝑐)

B(𝑏, 𝑐) B(𝑎, 𝑐),

∼ =

𝑓 ∗

∼ =

𝑓 ∗

where the morphisms from the back to the front are equivalences since the top
and bottom faces are pullbacks. It follows that the back face is a pullback if and
only if the front face is so, and the former property for all 𝑧 ∈ E says precisely
that 𝑓 is 𝑝-cocartesian. □

Proposition 3.6.4. For a functor 𝑝 : E → B and a monomorphism 𝑆 ↩→ E[1] , let
Ar𝑆 (E) ⊆ Ar(E) denote the full subcategory spanned by morphisms in 𝑆 . Then the
following are equivalent:

(1) 𝑝 is a cocartesian fibration and 𝑆 is the ∞-groupoid of 𝑝-cocartesian morphisms.

(2) The commutative square
Ar𝑆 (E) E

Ar(B) B

ev0

𝑝

ev0

is a pullback.
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Proof. Let 𝑞 denote the functor

Ar𝑆 (E) → Ar(B) ×B E

corresponding to the square above, so that (2) is equivalent to 𝑞 being an equiv-
alence.

First suppose (1) holds; then𝑞 is an equivalence on cores by Observation 3.5.8,
so it suffices to show that it is fully faithful. This follows from Lemma 3.6.3,
since for 𝑝-cocartesian morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑧 → 𝑤 over 𝑓 : 𝑎 → 𝑏 and
𝑔 : 𝑐 → 𝑑, we have

Ar𝑆 (E) (𝑓 , 𝑔) ≃ Ar(E) (𝑓 , 𝑔)
∼−→ Ar(B) (𝑓 , 𝑔) ×B(𝑎,𝑐 ) E(𝑥, 𝑧).

Now we prove the converse. Assuming (2), we first note that on cores we
have a pullback

𝑆 E≃

B[1] B≃,

so that given 𝑥 ∈ E and 𝑓 : 𝑝 (𝑥) → 𝑏, there exists a (unique) lift 𝑓 : 𝑥 → 𝑦 in 𝑆
such that 𝑝 (𝑓 ) ≃ 𝑓 . By uniqueness of 𝑝-cocartesian lifts, it therefore suffices to
show that a morphism 𝑠 : 𝑥 → 𝑥 ′ in 𝑆 must be 𝑝-cocartesian.

The pullback above also implies that the degeneracy E≃ → E[1] factors
through 𝑆 , so that 𝑆 contains all equivalences. We can thus conclude that con-
dition (3) in Lemma 3.6.3 holds for any 𝑓 in 𝑆 and 𝑧 ∈ E, so that 𝑓 is indeed
𝑝-cocartesian. □

Corollary 3.6.5. Suppose 𝑝 : E → B is a cocartesian fibration. Then for any ∞-
category K, the functor

𝑝∗ : Fun(K,E) → Fun(K,B),

given by composition with 𝑝 , is also a cocartesian fibration. A natural transformation
𝜙 : K × [1] → E is 𝑝∗-cocartesian if and only if its components 𝜙𝑎 : [1] → E are
𝑝-cocartesian for all 𝑎 ∈ K.

Proof. Let 𝑆 ⊆ Map( [1], Fun(K,E)) be the sub-∞-groupoid of natural transfor-
mations all of whose components are 𝑝-cocartesian. Then under the equiv-
alence Fun(K, Ar(E)) ≃ Ar(Fun(K,E)), Lemma 2.8.6 identifies Ar𝑆 (Fun(K,E))
with Fun(K, Arcoct(E)). Since 𝑝 is a cocartesian fibration, this is equivalent to

Fun(K, Ar(B) ×B E) ≃ Ar(Fun(K,B)) ×Fun(K,B) Fun(K,E) .

But then Proposition 3.6.4 implies that 𝑝∗ is a cocartesian fibration and 𝑆 is
precisely the ∞-groupoid of 𝑝-cocartesian morphisms. □
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Observation 3.6.6. Given a functor 𝑝 : E → B, let Arcoct(E) denote the full
subcategory of Ar(E) spanned by the 𝑝-cocartesian morphisms. Then Proposi-
tion 3.6.4 implies that 𝑝 is a cocartesian fibration if and only if

Arcoct(E) → Ar(B) ×B E

is an equivalence.

Observation 3.6.7. Suppose 𝑝 : E→ B is a cocartesian fibration. Inverting the
equivalence from Proposition 3.6.4, we get a functor

E ×B Ar(B) ∼−→ Arcoct(E)
ev1−−→ E,

which takes an object (𝑥, 𝑓 : 𝑝 (𝑥) → 𝑏) in the source to the target 𝑓!𝑥 of a
cocartesian lift of 𝑓 with source 𝑥 ; we call this the cocartesian transport functor.

Taking the fibre of this map at an object 𝑏 ∈ B, we get a functor

E ×B B/𝑏 → E𝑏

and restricting this to the fibre of the source over 𝑏′ ∈ B, we get a functor

E𝑏′ ×B(𝑏′, 𝑏) → E𝑏

or
B(𝑏′, 𝑏) → Map(E𝑏′,E𝑏) .

The straightening theorem, which we will discuss in the next section, says that this
assignment is part of a functor B→ Cat∞ determined by 𝑝.

Example 3.6.8. Consider the cocartesian fibration ev1 : Ar(C) → C. Then
Arcoct(Ar(C)) is the full subcategory of Fun( [1] × [1],C) spanned by commu-
tative squares

𝑥 𝑦

𝑧 𝑤

∼

where the left vertical map is an equivalence. We therefore get an equivalence
Arcoct(Ar(C)) ≃ Fun( [2],C), under which the equivalence

Arcoct(Ar(C))
∼−→ Ar(C) ×C Ar(C)

is that given by the pushout [2] ≃ [1] ⨿[0] [1]; the cocartesian transport functor
from Observation 3.6.7 is then just the functor

Ar(C) ×C Ar(C)
∼−→ Fun( [2],C) → Ar(C)

given by composition.
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3.7 Straightening for (co)cartesian fibrations

We can now see how a cocartesian fibration 𝑝 : E → B determines the basic
data of a functor B→ Cat∞:

▶ We have a commutative diagram

E Arcoct(E) E

B Ar(B) B,

𝑠 𝑡

𝑠 𝑡

where the left square is a pullback by Proposition 3.6.4. On fibres over
𝑓 : 𝑏 → 𝑏′ in Ar(𝑐𝐵), we therefore get

E𝑏
∼←− Arcoct(E) → E𝑏′,

which (inverting the equivalence) we think of as a functor 𝑓! : E𝑏 → E𝑏′ .

▶ For the identity map id𝑏 we have a commutative diagram

E

E Ar(E) E,

= =

𝑠 𝑡

so on fibres we get

E𝑏

E𝑏 Arcoct(E)id𝑏 E𝑏,

= =

∼

which shows that (id𝑏)! ≃ idE𝑏 .

▶ For two composable maps 𝑓 : 𝑏 → 𝑏′, 𝑔 : 𝑏′ → 𝑏′′ we can consider fibres in
the diagram

Arcoct(E)

Funcoct( [2],E)

Arcoct(E) Arcoct(E)

E E E,

𝑠 𝑡

𝑑1

𝑠 𝑡 𝑠 𝑡
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where Funcoct( [2],E) denotes the full subcategory of Fun( [2],E) on func-
tors that take all maps to 𝑝-cocartesian morphisms in E, so that the middle
square is a pullback. This produces the diagram

Arcoct(E)𝑔𝑓

Funcoct( [2],E)𝑔,𝑓

Arcoct(E)𝑓 Arcoct(E)𝑔

E𝑏 E𝑏′ E𝑏′′,

∼
∼

∼

∼ ∼

which gives a homotopy
(𝑔𝑓 )! ≃ 𝑔! 𝑓!.

Definition 3.7.1. For an ∞-category B, let Cart(B) and Cocart(B) denote the
subcategories of Cat∞/B whose objects are the (co)cartesian fibrations and whose
morphisms are the morphisms of (co)cartesian fibrations over B (i.e. the func-
tors over B that preserve (co)cartesian morphisms).

Theorem 3.7.2 (Lurie). For an ∞-category B, there is an equivalence

Strcoct
B : Cocart(B) ∼−→ Fun(B, Cat∞),

called the straightening equivalence for cocartesian fibrations. This is moreover natural
in B with respect to precomposition of functors and pullback of fibrations.

Here the naturality means that if a fibration 𝑝 : E → B straightens to a
functor 𝐹 : B→ Cat∞, and we have a pullback square

F E

C B,

𝑞
⌟

𝑝

𝜙

then the cocartesian fibration 𝑞 straightens to 𝐹 ◦ 𝜙 .

Observation 3.7.3. Taking opposite ∞-categories induces an equivalence

Cart(B) ≃ Cocart(Bop) .

We can combine this with the straightening equivalence from Theorem 3.7.2 to
get a straightening equivalence for cartesian fibrations. For a cartesian fibration
𝑝 : E → B we would like this to produce a contravariant functor that takes
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𝑏 ∈ B to E𝑏 (and not Eop
𝑏

— in particular, straightening over [0] should give the
identity of Cat∞). We therefore define this as the composite

Strcart
B : Cart(B)

(–)op

−−−−→ Cocart(Bop)
Strcoct

Bop
−−−−−→ Fun(Bop, Cat∞)

(–)op

−−−−→ Fun(Bop, Cat∞) .

Example 3.7.4. The projection A × B → A is a cocartesian fibration (Exam-
ple 3.5.16). Since pullback of fibrations corresponds to composition of functors,
this straightens to the composite

B→ ∗ A−→ Cat∞,

i.e. the constant functor with value B.

We will treat straightening as a black box, but we will need to look inside
a little bit in order to prove that the Yoneda embedding is fully faithful. More
precisely, we will need the following:

Fact 3.7.5. Suppose 𝑝 : E→ B is a cocartesian fibration, and let 𝐹 : B→ Cat∞ be its
straightening. Then for objects 𝑥,𝑦 ∈ B, the morphism of mapping spaces

B(𝑥,𝑦) → Map(𝐹 (𝑥), 𝐹 (𝑦)) ≃ Map(E𝑥 ,E𝑦)

determined by 𝐹 is equivalent to the map constructed in Observation 3.6.7 from the
cocartesian transport functor E ×B Ar(B) ∼←− Arcoct(E)

ev1−−→ E.
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Chapter 4

Representability and the
Yoneda embedding

4.1 Terminal objects and representable fibrations

Our main goal in this section is to characterize those right fibrations over B

that are of the form B/𝑥 → B for some object 𝑥 . We start by introducing initial
and terminal objects in an ∞-category:

Definition 4.1.1. An object 𝑥 ∈ C is initial if C(𝑥, 𝑐) is contractible for all 𝑐 ∈ C,
and terminal if C(𝑐, 𝑥) is contractible for all 𝑐.

Observation 4.1.2. If Cinit denotes the full subcategory of C spanned by the
initial objects, then all mapping ∞-groupoids in Cinit are contractible. It there-
fore follows from Corollary 2.1.20 that Cinit is either empty or contractible. In
other words, initial objects are unique if they exist.

Observation 4.1.3. The object 𝑥 is initial if and only if C𝑥/ → C is an equiva-
lence, and terminal if and only if C/𝑥 → C is an equivalence.

Definition 4.1.4. A right fibration 𝑝 : E→ B is representable if E has a terminal
object, while a left fibration 𝑝 is corepresentable if E has an initial object. We also
say that 𝑝 is represented by 𝑏 ∈ B if E has a terminal object that lies over 𝑏; we
may also say an object 𝑥 ∈ E exhibits 𝑝 as represented by 𝑏 if 𝑥 is terminal and
𝑝 (𝑥) ≃ 𝑏.

Definition 4.1.5. We say a presheaf 𝜙 : Bop → Gpd∞ is representable if the cor-
responding right fibration is representable, and that a copresheaf B → Gpd∞
is corepresentable if the corresponding left fibration is corepresentable. We will
similarly say that 𝜙 is represented by 𝑏 ∈ B and that a point 𝑥 ∈ 𝜙 (𝑏) exhibits 𝜙
as represented by 𝑏 if the corresponding statement hold for the associated right
fibration.
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Observation 4.1.6. Suppose 𝑝 : E→ B is a right fibration. Then for any object
𝑥 ∈ E we have a commutative square

E/𝑥 B/𝑏

E B,

∼

𝑝

where the top horizontal morphism is an equivalence by Lemma 3.3.10. Invert-
ing this equivalence, we see that 𝑥 determines a morphism 𝑠𝑥 : B/𝑏 → E over
B, which takes id𝑏 to 𝑥 .

Proposition 4.1.7. Let 𝑝 : E→ B be a right fibration. Then an object 𝑥 ∈ E exhibits
𝑝 as represented by 𝑏 ≃ 𝑝 (𝑥) if and only if 𝑠𝑥 : B/𝑏 → E is an equivalence.

Proof. By definition, 𝑠𝑥 is the composite B/𝑏
∼−→ E/𝑥 → E, so the composite

is an equivalence if and only if E/𝑥 → E is an equivalence, i.e. 𝑥 is a terminal
object. □

Observation 4.1.8. In terms of presheaves, this says that given a point 𝑥 ∈
𝜙 (𝑏) for a presheaf 𝜙 : Bop → Gpd∞, there is a canonical natural transformation
B(–, 𝑏) → 𝜙 that takes id𝑏 to 𝑥 , and 𝑥 exhibits 𝜙 as represented by 𝑏 precisely if
this is an equivalence.

Proposition 4.1.9. id𝑥 is initial in C𝑥/ and terminal in C/𝑥 . In particular, C/𝑥 → C

is a representable right fibration and C𝑥/ → C is a corepresentable left fibration.
Proof. We prove the first case by showing that the forgetful functor 𝑝 : (C𝑥/)id𝑥 / →
C𝑥/ is an equivalence. Using Proposition 3.3.7 and the naturality inK, of Lemma 3.3.5
we can identify the forgetful functor (C𝑥/)𝑓 / → C𝑥/ with the map on fibres over
𝑓 in the square

Fun( [2],C) Fun({0 < 2},C)

Fun({0 < 1},C) Fun({0},C).

From the Segal decomposition of [2] we get a pushout square

{0 < 1} [2]

{0} [1],

and so we have a commutative diagram

Ar(C) Fun( [2],C) Fun({0 < 2},C)

C Fun({0 < 1},C) Fun({0},C)

⌟
𝑠
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where the left square is a pullback and both horizontal composites are identities.
Taking fibres at 𝑥 ∈ C, we get

C𝑥/
∼−→ (C𝑥/)id𝑥 /

𝑝
−→ C𝑥/

where the first map is an equivalence and the composite is the identity. It follows
that our map 𝑝 is an equivalence, as required. □

Combining Proposition 4.1.7 and Proposition 4.1.9, we get:

Corollary 4.1.10. A right fibration overB is representable if and only if it is equivalent
to B/𝑏 → B for some 𝑏 ∈ B, while a left fibration is corepresentable if and only if it is
equivalent to B𝑏/ → B for some 𝑏 ∈ B. □

4.2 A weak Yoneda lemma

Our goal in this section is to prove a weak form of the Yoneda lemma, namely
that for a functor 𝐹 : Cop → Gpd∞ and a fixed object 𝑥 ∈ C, the ∞-groupoid
of natural transformations C(–, 𝑥) → 𝐹 is equivalent to 𝐹 (𝑥). This will be a
consequence of the following property of initial and terminal objects:

Proposition 4.2.1. Suppose I has an initial object 𝑥 . Then any left fibration 𝑝 : E→
B is right orthogonal to the inclusion {𝑥} → I. Dually, any right fibration is right
orthogonal to the inclusion of a terminal object.

Proof. We prove the case of a left fibration 𝑝. By Corollary 3.2.5, 𝑝∗ : Fun(K,E) →
Fun(K,B) is a left fibration for any∞-category K, which implies that 𝑝 is right
orthogonal to {0} ×K→ [1] ×K. Now we have by definition a pushout

{0} ×K [1] ×K

{−∞} K⊳,

so 𝑝 is also right orthogonal to the inclusion of the cone point inK⊳ by Lemma 2.4.7.
By Lemma 2.4.5, it then follows that 𝑝 is right orthogonal to L⊳ → K⊳ for any
functor L→ K.

In particular, 𝑝 is right orthogonal to {𝑥}⊳ → I⊳. Since 𝑥 is an initial object,
the forgetful functor I𝑥/ → I is an equivalence, so it have an inverse section
I→ I𝑥/. Using Lemma 3.3.5, this corresponds to a functor 𝜙 : I⊳ → I that takes
−∞ to 𝑥 and restricts to the identity on I. But this means we have a retract
diagram

{𝑥} {𝑥}⊳ {𝑥}

I I⊳ I,
𝜙
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so that 𝑝 is indeed right orthogonal to {𝑥} → I by Lemma 2.4.9. □

Corollary 4.2.2. Suppose 𝑝 : E→ C is a right fibration; then for 𝑥 ∈ C, the morphism

Map/C(C/𝑥 ,E) → Map/C({𝑥},E) ≃ E𝑥

is an equivalence. Dually, if 𝑝 is a left fibration, the map

Map/C(C𝑥/,E) → Map/C({𝑥},E) ≃ E𝑥

is an equivalence.

Proof. We prove the first case. By Proposition 4.2.1, 𝑝 is right orthogonal to the
inclusion of the initial object {id𝑥 } → C/𝑥 , so we have a pullback square

Map(C/𝑥 ,E) Map(C/𝑥 ,C)

Map({𝑥},E) Map({𝑥},C).

⌟

Taking vertical fibres over the projection C/𝑥 → C we get the equivalence we
want. □

Remark 4.2.3. An alternative approach to the proof Corollary 4.2.2 is to use
that C/𝑥 → C is the free cartesian fibration on {𝑥} → C, as we will see below in
§6.1.

Remark 4.2.4. If 𝑝 is a left fibration, then for 𝑓 : I → B and 𝑒 ∈ E over 𝑓 (𝑥)
we have an induced functor I𝑥/ → B𝑓 𝑥/

𝑠𝑒−→ E, which lifts 𝑓 if 𝑥 is initial. It
is thus not completely mysterious that we get an inverse to the restrictions in
Corollary 4.2.2.

Notation 4.2.5. We write PSh(C) := Fun(Cop,Gpd∞) for the ∞-category of
presheaves on C. Note that straightening then gives an equivalence PSh(C) ≃
RFib(C).

Observation 4.2.6. Under straightening, Corollary 4.2.2 gives a weak form of
the Yoneda lemma: for a presheaf 𝐹 : Cop → Gpd∞, we get an equivalence

MapPSh(C) (C(–, 𝑥), 𝐹 ) ≃ 𝐹 (𝑥),

since the functor C(–, 𝑥) is (by definition) the straightening of the right fibration
C/𝑥 → C.

Exercise 4.1. Show that, for a right fibration 𝑝 : E→ B, the maps 𝑠𝑥 : B/𝑝 (𝑥 ) → E for
𝑥 ∈ E are natural in 𝑥 , and use this to produce a section of the map

Map/C (C/𝑥 ,E) → Map/C ({𝑥},E)

(This is then necessarily its inverse by Corollary 4.2.2.)
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4.3 Bifibrations

A bifibration over A×B is supposed to encode a functor Aop×B→ Gpd∞. Here
we introduce this class of functors and explain how this claim follows from the
straightening results we have discussed above. We apply this to construct the
mapping ∞-groupoid functor Cop × C→ Gpd∞.

Notation 4.3.1. Given 𝑝 : E→ A ×B we write 𝑝A, 𝑝B for the compositions of
𝑝 with the projections to A and B.

Definition 4.3.2. A functor 𝑝 : E→ A ×B is a bifibration if

▶ 𝑝A is a cartesian fibration,

▶ 𝑝B is a cocartesian fibration,

▶ a morphism in E is 𝑝A-cartesian if and only if its image under 𝑝B is an
equivalence,

▶ a morphism in E is 𝑝B-cocartesian if and only if its image under 𝑝A is an
equivalence.

Warning 4.3.3. In parts of the category theory literature the term “bifibration”
is used for a functor that is both a cartesian and a cocartesian fibration. Our
terminology follows Higher Topos Theory; the 1-categorical analogue of what
we call bifibrations might elsewhere be called “two-sided discrete fibrations”.

Observation 4.3.4. Given a commutative triangle

E F

A ×B

𝜙

𝑝

𝑞

where both 𝑝 and 𝑞 are bifibrations, the functor 𝜙 must preserve 𝑝A-cartesian
and 𝑝B-cocartesian morphisms, since it necessarily preserves the classes that map
to equivalences in A or B.

Corollary 4.3.5. Suppose 𝑝 : E→ A ×B is a bifibration. Then:

(1) The functor 𝑝𝑎 : E𝑎 → B on fibres over 𝑎 ∈ A is a left fibration for all 𝑎 ∈ A.

(2) The functor 𝑝𝑏 : E𝑏 → A on fibres over 𝑏 ∈ B is a right fibration for all 𝑏 ∈ B.

Proof. We prove the first case. For 𝑎 ∈ A, we have a pullback square

E𝑎 E

{𝑎} ×B A ×B

𝑝
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of cocartesian fibrations over B along functors that preserve cocartesian mor-
phisms (since the cocartesian morphisms in A × B over B are those that map
to equivalences in A). Hence Exercise 3.7 implies that 𝑝𝑎 : E𝑎 → B is a co-
cartesian fibration, and the cocartesian morphisms are those that map to 𝑝B-
cocartesian morphisms in E. But since 𝑝 is a bifibration, every morphism in E𝑎

maps to a 𝑝B-cocartesian morphism, since their images all lie over id𝑎 in A.
Thus every morphism in E𝑎 is 𝑝𝑎-cocartesian, so that 𝑝𝑎 is a left fibration by
Corollary 3.5.11. □

Remark 4.3.6. In fact, we can characterize bifibrations as precisely the functors
𝑝 : E→ A ×B such that either of the following equivalent conditions hold:

(1) 𝑝A is a cartesian fibration, 𝑝A-cartesian morphisms lie over equivalences in
B, and 𝑝𝑎 : E𝑎 → B is a left fibration for all 𝑎 ∈ A.

(2) 𝑝B is a cocartesian fibration, 𝑝B-cocartesian morphisms lie over equiva-
lences in A, and 𝑝𝑏 : E𝑏 → B is a right fibration for all 𝑏 ∈ B.

See [HHLN23a, 2.3.3 and 2.3.13] for a proof.

Construction 4.3.7. Given a bifibration 𝑝 : E → A × B, we can consider the
commutative triangle

E A ×B

B

𝑝

𝑝B

as a morphism of cocartesian fibrations over B (since by Example 3.5.16 a co-
cartesian morphism in A ×B over B is precisely one whose component in A is
an equivalence). We can therefore straighten this to a natural transformation

B × [1] → Cat∞,

Here the target is the constant functor with value A, so this is equivalently a
functor

B→ Cat∞/A.

For 𝑏 ∈ B, the value of this functor is E𝑎 → A, which is a right fibration. This
functor therefore takes values in the full subcategory RFib(A). Now we can use
straightening for right fibrations over A to get a functor

B→ RFib(A) ≃ Fun(Aop,Gpd∞),

or Aop ×B→ Gpd∞.
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Remark 4.3.8. Of course, we could also have done this straightening in the
other order: first constructed a functor Aop → LFib(B) and then straightened
the fibrewise left fibrations to a functor Aop ×B→ Gpd∞. It is not immediately
obvious that the two constructions produce the same functor, but in fact it can
be shown that there is a unique straightening equivalence for bifibrations (as well
as for (co)cartesian fibrations and their two-variable version); see [HHLN23b,
Appendix A] for a proof.

Example 4.3.9. The functor 𝑝 : Ar(C) → C × C given by restriction along
{0, 1} → [1] is a bifibration. Indeed, this is precisely the content of Propo-
sition 3.6.2. Applying Construction 4.3.7, we obtain a functor

yC : C→ RFib(C) ∼−→ PSh(C),

which we call the Yoneda embedding. We can also equivalently view this as the
mapping ∞-groupoid functor

C(–, –) : Cop × C→ Gpd∞.

Lemma 4.3.10. Suppose 𝑝 : E → A × B is a bifibration. For functors 𝐹 : A′ → A

and 𝐺 : B′ → B, we define (𝐹,𝐺)∗E by the pullback

(𝐹,𝐺)∗E E

A′ ×B′ A ×B.

𝑝′
⌟

𝑝

𝐹×𝐺

Then (𝐹,𝐺)×E→ A′ ×B′ is also a bifibration.

Proof. From the pullback square defining (𝐹,𝐺)∗E we get a pullback of cartesian
fibrations

(𝐹,𝐺)∗E 𝐹 ∗E

A′ ×B′ A′ ×B

⌟
𝑝

𝐹×𝐺

over A′, so that (Exercise 3.7) 𝑝′
A′ is a cartesian fibration, with a 𝑝′

A′-cartesian
morphism being one that maps to an equivalence in B′ and a 𝑝-cartesian mor-
phism in E; since 𝑝 is a bifibration this reduces to the morphisms that map to
equivalences in B′. We similarly get a pullback of cocartesian fibrations over
B′, and together these show that 𝑝′ is a bifibration. □

4.4 The Yoneda embedding

Our goal in this section is to show that the Yoneda embedding yC : C→ PSh(C)
is fully faithful for any ∞-category C. More precisely, we will show that the
functor

𝑗 : C→ RFib(C),
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obtained by unstraightening Ar(C) → C × C in the second variable, is fully
faithful, with image the full subcategory RFibrep(C) ⊆ RFib(C) of representable
presheaves. We will then use this to prove a stronger version of the Yoneda
lemma, namely an identification of the presheaf

MapPSh(C) (yC(–), 𝐹 )

with 𝐹 , for a fixed 𝐹 ∈ PSh(C).

Proposition 4.4.1. The functor 𝑗 : C → RFib(C) is fully faithful with image the
representable right fibrations.

Proof. We first show that 𝑗 is fully faithful, i.e. that for 𝑥,𝑦 ∈ C the induced
morphism

C(𝑥,𝑦) → Map/C(C/𝑥 ,C/𝑦) (4.1)

is an equivalence. Using Corollary 4.2.2, it suffices to show that the composite

C(𝑥,𝑦) → Map/C(C/𝑥 ,C/𝑦)
∼−→ MapC({𝑥},C/𝑦) ≃ (C/𝑦)𝑥 ≃ C(𝑥,𝑦)

is an equivalence.
The functor 𝑗 was obtained from ev1 : Ar(C) → C by cocartesian straighten-

ing, so by Fact 3.7.5 we can describe (4.1) via the cocartesian transport functor
from Observation 3.6.7. For ev1 this was identified in Example 3.6.8, so we
conclude that (4.1) is adjoint to the map

C/𝑥 × C(𝑥,𝑦) C/𝑦

C

given by composition. Restricting this to {id𝑥 } we get that our composite map

C(𝑥,𝑦) → (C/𝑦)𝑥

is given by composition with id𝑥 , and so is the identity.
To identify the image of 𝑗 , we observe that on the one hand, 𝑗 (𝑥) = (C/𝑥 →

C) is representable for every 𝑥 ∈ C, and on the other hand Proposition 4.1.7
shows that every representable right fibration is equivalent to one in the image
of 𝑗 . □

Suppose 𝐹 : Cop → Gpd∞ is a presheaf with right fibration F → C. We
already proved a weak form of the Yoneda lemma, namely an equivalence

MapPSh(C) (yC(𝑥), 𝐹 ) ≃ Map/C(C/𝑥 ,F) ≃ F𝑥 ≃ 𝐹 (𝑥)

for a fixed 𝑥 . We will now strengthen this to an identification of the presheaf

MapPSh(C) (yC(–), 𝐹 )
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with 𝐹 . Since composition of functors corresponds under straightening to pull-
backs of fibrations, we can identify the right fibration for this presheaf as the
pullback

X PSh(C)/𝐹

C PSh(C)

⌟

y

or
X RFib(C)/𝑝

C RFib(C),

⌟

𝑗

where 𝑝 : E → C is the right fibration for 𝐹 . Our goal is therefore to find a
pullback square of the form

E RFib(C)/𝑝

C RFib(C) .

𝑝

⌟

𝑗

Observation 4.4.2. If 𝑝 : E→ C is a right fibration, then the equivalence

(Cat∞/C)/𝑝 ≃ Cat∞/E

of Corollary 3.3.9 (under which the forgetful functor to Cat∞/C corresponds to
composition with 𝑝) restricts to an equivalence

RFib(C)/𝑝 ≃ RFib(E) .

Indeed, it follows from (the dual of ) Lemma 2.4.5 that a functor 𝑞 : X→ E is a
right fibration if and only if 𝑝𝑞 is a right fibration.

Observation 4.4.3. For an arbitrary functor 𝑝 : E→ C, we have a commutative
diagram

Ar(E) Ar(C)

E×2 C×2

E C,

where the top square consists of morphisms of cocartesian fibrations. This
straightens to a square of natural transformations of functors to Cat∞, which
we can identify with a natural transformation in the square

E Cat∞/E

C Cat∞/C

𝑗E

𝑝 𝑝∗

𝑗C
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whose component at 𝑥 ∈ E is given by the square

E/𝑥 C/𝑝𝑥

E C.
𝑝

If 𝑝 is a right fibration, then the functor E/𝑥 → C/𝑝𝑥 is an equivalence, so that
this natural transformation is invertible, and we get a commutative square

E RFib(E)

C RFib(C) .

𝑗E

𝑝 𝑝∗

𝑗C

(4.2)

Proposition 4.4.4. For 𝑝 : E→ C a right fibration, the commutative square (4.2) is
a pullback.

Proof. We know from Proposition 4.4.1 that the horizontal functors are both
fully faithful. It then follows from Exercise 2.16 that the square is a pullback
if and only if it is a pullback on 𝜋0 of cores. Thus we have a pullback if and
only if the objects in the image of 𝑗E are precisely those whose value under 𝑝∗
lies in the image of 𝑗C. In other words, we need to show that a right fibration
over E is representable if and only if its composition with 𝑝 is a representable
right fibration over C. This is clear since both conditions amount to having a
terminal object. □

Combining Proposition 4.4.4 with Observation 4.4.2, we see:

Corollary 4.4.5. For a right fibration 𝑝 : E→ C, there is a pullback square

E RFib(C)/𝑝

C RFib(C).

𝑝

⌟

𝑗

If 𝐹 is the presheaf corresponding to 𝑝 under straightening, then this gives an equivalence

𝐹 ≃ MapPSh(C) (y(–), 𝐹 )

in PSh(C).

Question 4.4.6. Can we make this Yoneda equivalence functorial in 𝐹 ? (This
amounts to making the straightening construction in Observation 4.4.3 func-
torial in right fibrations. . . )
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Chapter 5

Limits and colimits

5.1 Joins and (co)cones

In this section we introduce the ∞-categories of (co)cones on a diagram, which
we will use to define (co)limits in the next section. We also explain how these
can be described in terms of joins of ∞-categories.

Definition 5.1.1. For a functor 𝑝 : I → C, the ∞-category of cones of 𝑝 is the
pullback

C/𝑝 Fun(I,C)/𝑝

C Fun(I,C),

where the bottom horizontal functor is the constant diagram functor (given by
composition with I → [0]). Dually, the ∞-category C𝑝/ of cocones of 𝑝 is the
pullback

C𝑝/ Fun(I,C)𝑝/

C Fun(I,C).

Definition 5.1.2. The join of two ∞-categories K,L is the pushout

K★L := K ⨿K×L×{0} K × L × [1] ⨿K×L×{1} L.

(Note that this is not symmetric in K and L, though we have (K ★ L)op ≃
Lop ★Kop.)

Example 5.1.3. The left and right cones on K can be described as the joins

K⊳ ≃ [0] ★K, K⊲ ≃ K★ [0] .
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Remark 5.1.4. Just as for the cones, it can be shown (e.g. using quasicategories)
that we have

(K★L)≃ ≃ K≃ ⨿ L≃,

(K★L) (𝑥,𝑦) ≃


∗, 𝑥 ∈ K, 𝑦 ∈ L,
∅, 𝑥 ∈ L, 𝑦 ∈ K,
K(𝑥,𝑦), 𝑥,𝑦 ∈ K,
L(𝑥,𝑦), 𝑥,𝑦 ∈ L.

We can generalize Lemma 3.3.5 to:

Proposition 5.1.5. For a functor 𝑝 : I→ C and an∞-category K, we have canonical
pullback squares

Fun(K,C/𝑝) Fun(K★ I,C)

{𝑝} Fun(I,C),

Fun(K,C𝑝/) Fun(I★K,C)

{𝑝} Fun(I,C) .

Proof. We prove the first case. From the definition of C/𝑝 , we get a pullback

Fun(K,C/𝑝) Fun(K × [1], Fun(I,C))

Fun(K,C) × {𝑝} Fun(K × {0, 1}, Fun(I,C)) .

On the other hand, from the definition of the join we have a pullback

Fun(K★ I,C) Fun(K × [1], Fun(I,C))

Fun(K,C) × Fun(I,C) Fun(K × {0, 1}, Fun(I,C)) .

We can then combine these into a commutative diagram

Fun(K,C/𝑝) Fun(K★ I,C) Fun(K × [1], Fun(I,C))

Fun(K,C) × {𝑝} Fun(K,C) × Fun(I,C) Fun(K × {0, 1}, Fun(I,C))

{𝑝} Fun(I,C),

where the top left square is a pullback by 3-for-2. Hence the composite square
in the first row is a pullback, which completes the proof. □
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Observation 5.1.6. In particular, taking K = [0] above, we have pullback
squares

C/𝑝 Fun(I⊳,C)

{𝑝} Fun(I,C),

C𝑝/ Fun(I⊲,C)

{𝑝} Fun(I,C) .

5.2 Limits and colimits

We can now define (co)limits in an ∞-category. Using straightening we can
then provide concrete descriptions of these in the ∞-category Gpd∞, which
allows us to deduce further characterizations of (co)limits.

Definition 5.2.1. A limit of 𝑝 is an terminal object in the ∞-category C/𝑝 of
cones. Dually, a colimit is an initial object in C𝑝/.

Notation 5.2.2. We write limI 𝑝 and colimI 𝑝 for the objects of C that are the
value at the cone point of the limit cone and colimit cocone of 𝑝, when these
exist.

Proposition 5.2.3. Suppose 𝐹 : C → Gpd∞ is a functor that corresponds to the left
fibration F→ C. Then:

▶ The limit of 𝐹 is given by the ∞-groupoid Map/C(C,F) of sections of F.

▶ The colimit of 𝐹 is given by the localization ∥F∥.

Proof. By definition, the limit is a terminal object in Gpd∞/𝐹 . Using the equiv-
alence Fun(C,Gpd∞) ≃ LFib(C) this ∞-category is the pullback

Gpd∞/𝐹 LFib(C)/F

Gpd∞ LFib(C) .
–×C

Hence Gpd∞/𝐹 → Gpd∞ is the right fibration for the functor

𝑋 ↦→ Map/C(C × 𝑋,F) ≃ Map(𝑋,Map/C(C,F)),

where we have used that Fun/C(C,F) is an∞-groupoid, since it’s a fibre of the left
fibration Fun(C,F) → Fun(C,C). Thus Gpd∞/𝐹 is equivalent to Gpd∞/Map/C (C,F) ,
which indeed has a terminal object given by Map/C(C,F).

To identify the colimit, we similarly observe that Gpd∞,𝐹/ → Gpd∞ is the
left fibration for the functor

𝑋 ↦→ Map/C(F,C × 𝑋 ) ≃ Map(F, 𝑋 ) ≃ Map(∥F∥, 𝑋 ).

Thus Gpd∞,𝐹/ ≃ Gpd∞,∥F∥/ which indeed has the required initial object. □
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Exercise 5.1. Let 𝑞 : E→ Cop be the right fibration for 𝐹 . Show that the limit of 𝐹 can
also be described as the ∞-groupoid of sections of 𝑞, and the colimit of 𝐹 is also ∥E∥.

Definition 5.2.4. Given morphisms 𝑥
𝑓
−→ 𝑦

𝑔
←− 𝑧 in an ∞-category C, their

pullback, if it exists, is the limit of the corresponding diagram Λ2
2 → C, where

Λ2
2 := {0 < 2} ⨿2 {1 < 2} is the cospan category

0→ 2← 1.

Corollary 5.2.5. Pullbacks in the ∞-category Gpd∞ are pullbacks in the “external”
sense.

Proof. Given a diagram Λ2
2 → Gpd∞ with corresponding left fibration E→ Λ2

2,
we know that the limit is Map/Λ2

2
(Λ2

2,E). Now using that Λ2
2 is a pushout, we

get

Map/Λ2
2
(Λ2

2,E) ≃ Map/Λ2
2
({0 < 2},E) ×Map/Λ2

2
({2},E) Map/Λ2

2
({1 < 2},E)

≃ Map/[1] ( [1],E0<2) ×E2 Map/[1] ( [1],E1<2)
≃ E0 ×E2 E1,

where we have used that

Map/[1] ( [1],E𝑖<2) ≃ Ar(E𝑖<2)𝑖<2
ev0−−→ E𝑖

is an equivalence since E𝑖<2 → [1] is a left fibration. □

5.3 Localizations and (co)limits of ∞-categories

We now wish to describe (co)limits in Cat∞ in terms of (co)cartesian fibrations.
To state this, we first need to briefly introduce localizations of ∞-categories:

Definition 5.3.1. Suppose C is an∞-category and 𝑆 ⊆ C[1] is an∞-groupoid of
morphisms that generate a subcategory C𝑆 via Fact 2.11.1. Then the localization
C[𝑆−1] of C at 𝑆 is the ∞-category given by the pushout

C𝑆 ∥C𝑆 ∥

C C[𝑆−1] .

Observation 5.3.2. For an ∞-category D, we get a pullback square

Map(C[𝑆−1],D) Map(C,D)

Map(C𝑆 ,D≃) Map(C𝑆 ,D) .
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In other words, a functor C→ D factors (uniquely) through C[𝑆−1] if and only
if it takes the morphisms in 𝑆 to equivalences in D.

Exercise 5.2. Let 𝐿 : C → C[𝑆−1] be the localization functor at 𝑆 ⊆ C[1], and take
𝑆 ⊆ C[1] to be the ∞-groupoid of morphisms that are taken to equivalences by 𝐿.
Show that then 𝐿 also exhibits C[𝑆−1] as the localization of C at 𝑆 .

Remark 5.3.3. It follows that a functor 𝐹 : C→ D exhibits D as the localization
of C at some collection of morphisms if and only if it is the localization at those
morphisms that are inverted by 𝐹 . Thus “being a localization” is a property of a
functor. (Unfortunately it is a property that we often want to establish but can
be very hard to verify!)

Proposition 5.3.4. Suppose 𝐹 : C → Cat∞ is a functor that corresponds to the co-
cartesian fibration F

𝑝
−→ C. Then:

▶ The limit of 𝐹 is given by the ∞-category Funcoct
/C (C,F) of cocartesian sections

of F, i.e. the full subcategory of Fun/C(C,F) spanned by functors that take all
morphisms of C to 𝑝-cocartesian morphisms in 𝐹 .

▶ The colimit of 𝐹 is given by the localization F[𝑆−1] , where 𝑆 is the collection of
𝑝-cocartesian morphisms.

Proof. By definition, the limit is a terminal object in Cat∞/𝐹 . Using the equiva-
lence Fun(C, Cat∞) ≃ Cocart(C), this ∞-category is the pullback

Cat∞/𝐹 Cocart(C)/F

Cat∞ Cocart(C).
–×C

Hence Cat∞/𝐹 → Cat∞ is the right fibration for the functor

K ↦→ Mapcoct
/C (C ×K,F) ≃ Map(K, Fun

coct
/C (C,F)) .

Thus Cat∞/𝐹 is equivalent to Cat∞/Funcoct
/C (C,F) , which indeed has a terminal object

given by Funcoct
/C (C,F).

To identify the colimit, we similarly observe that Cat∞,𝐹/ → Cat∞ is the left
fibration for the functor

K ↦→ Mapcoct
/C (F,C ×K).

Now under the equivalence

Map/C(F,C ×K) ≃ Map(F,C),

the sub-∞-groupoid Mapcoct
/C (F,C×K) corresponds to the∞-groupoid of mor-

phisms F→ C that take the 𝑝-cocartesian morphisms to equivalences, since the
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cocartesian morphisms in C × K are precisely those whose component in K is
an equivalence. Thus we have a natural equivalence

Mapcoct
/C (F,C ×K) ≃ Map(F[𝑆

−1],K),

so that Cat∞,𝐹/ ≃ Cat∞,F[𝑆−1 ]/, which indeed has the required initial object. □

Exercise 5.3. Let 𝑞 : E→ Bop be the cartesian fibration for 𝐹 . Show that the limit of 𝐹
can also be described as the ∞-category of cartesian sections of 𝑞, and the colimit of 𝐹
is also the localization of E at the cartesian morphisms.

Exercise 5.4. Generalize the argument from Corollary 5.2.5 to show that pullbacks in
Cat∞ are pullbacks in the “external” sense.

5.4 (Co)limits in subcategories

In this section we will prove the following criterion for identifying (co)limits
in a subcategory:

Proposition 5.4.1. Let 𝑖 : C′ → C be a subcategory, and 𝑝 : K → C′ a diagram
such that 𝑖𝑝 has a limit in C for which the limit cone 𝑞 : K⊳ → C factors through
C′. Suppose a morphism 𝑥 → limK 𝑖𝑝 with 𝑥 ∈ C′ such that the composites 𝑥 →
limK 𝑖𝑝

𝑞 (−∞→𝑘 )
−−−−−−−−→ 𝑝 (𝑘) are in C′ for all 𝑘 ∈ K lies in C′. Then 𝑞 is also a limit cone

in C′.

Remark 5.4.2. Less formally, this says that the limit of 𝑝 in C is also the limit of
𝑝 in C′ provided that limK 𝑖𝑝 is contained in C′, and a morphism 𝑥 → limK 𝑖𝑝

with 𝑥 ∈ C′ lies in C′ if and only if all the composites 𝑥 → limK 𝑖𝑝 → 𝑝 (𝑘) are
in C′.

Observation 5.4.3. Suppose 𝑖 : C′ → C is a subcategory, and C has a terminal
object 𝑥 . If 𝑥 lies in C′ and the unique morphism 𝑐 → 𝑥 lies in C′ for all 𝑐 ∈ C′,
then 𝑥 is also a terminal object in C′, since we have

∅ ≠ C′(𝑐, 𝑥) ↩→ C(𝑐, 𝑥) ≃ ∗.

Proposition 5.4.4. Suppose 𝑖 : C′ → C is a subcategory. Given a diagram 𝑝 : K→
C′, the induced functor

𝑖/𝑝 : C′/𝑝 → C/𝑖𝑝

is also a monomorphism, exhibiting C′/𝑝 as the subcategory of C/𝑖𝑝 whose objects are
the cones 𝑞 : K⊳ → C such that 𝑞(−∞) is an object of C′ and 𝑞(−∞) → 𝑞(𝑘) is a
morphism in C′ for every 𝑘 ∈ K, and whose morphisms among these are those whose
component at the cone point also lies in C′.
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Proof. For any ∞-category L we have the commutative cube

Map(L,C′/𝑝) Map(L★K,C′)

Map(L,C/𝑖𝑝) Map(L★K,C)

{𝑝} Map(K,C′)

{𝑖𝑝} Map(K,C) .

(𝑖/𝑝 )∗

=

Here we know the front and back faces are pullbacks, and the horizontal mor-
phisms in the right square are both monomorphisms. Moreover, the bottom
face is a pullback (as a fibre of a monomorphism is a point if it is not empty), so
the top face is also a pullback by the 3-for-2 property. This means that (𝑖/𝑝)∗ is
a monomorphism of ∞-groupoids for every L, so that 𝑖/𝑝 is a monomorphism
of ∞-categories, as required. Taking L = [0] we see that the objects of C′/𝑝 are
those cones 𝑞 : K⊳ → C that factor through C′, i.e. those that take the cone point
to an object of C′ and the morphism −∞ → 𝑘 to a morphism in C′ for every
𝑘 ∈ K; taking L = [1] we get that the morphisms of C′/𝑝 are those morphisms
among such cones whose component at the cone point lie in C′. □

As a special case, we note:

Corollary 5.4.5. Suppose 𝑖 : C′ → C is a full subcategory. Given a diagram 𝑝 : K→
C′, the induced functor

𝑖/𝑝 : C′/𝑝 → C/𝑖𝑝

is also fully faithful, with image the cones whose cone point lies in C′. In other words,
we have a pullback square

C′/𝑝 C/𝑖𝑝

C′ C.

Proof of Proposition 5.4.1. By Proposition 5.4.4 we have a subcategory inclusion

𝑖/𝑝 : C′/𝑝 → C/𝑖𝑝

where C/𝑖𝑝 has a terminal object 𝑞 that is in the image of 𝑖/𝑝 . From the descrip-
tion of this subcategory in Proposition 5.4.4, we see that the given assumptions
imply that for any cone 𝑞′ ∈ C′/𝑝 , the unique morphism 𝑖/𝑝 (𝑞′) → 𝑞 is contained
in C′/𝑝 . Then 𝑞 is also a terminal object in C′/𝑝 by Observation 5.4.3. □

Corollary 5.4.6. Suppose 𝑖 : C′ → C is a full subcategory, and 𝑝 : K → C′ is a
diagram such that 𝑖𝑝 has a limit in C. If limC 𝑖𝑝 is an object of C′ then it is also the
limit of 𝑝 in C′. □
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5.5 (Co)limits of functors and iterated (co)limits

In this section we prove two useful results about (co)limits: a (co)limit over a
product can be computed as an iterated (co)limit, and (co)limits in functor ∞-
categories are computed objectwise. The following result on terminal sections
is the key input for both:

Proposition 5.5.1. Suppose 𝑝 : E→ B is a cocartesian fibration such that each fibre
E𝑏 has a terminal object. Then the ∞-category Fun/B(B,E) of sections of 𝑝 has a
terminal object, which is the unique section 𝑠 such that 𝑠 (𝑏) is terminal in E𝑏 for all 𝑏 .

We first show that there is indeed such a unique section by making some
observations on fibrewise initial objects:

Observation 5.5.2. Suppose 𝑝 : E → B is a cartesian fibration, and ∅𝑥 is an
initial object in the fibre E𝑥 over some 𝑥 ∈ B. Then for any object 𝑒 ∈ E over
𝑦 ∈ B, the induced map

E(∅𝑥 , 𝑒) → B(𝑥,𝑦)
is an equivalence, since its fibre at 𝑓 : 𝑥 → 𝑦 is equivalent to

E𝑥 (∅𝑥 , 𝑓 ∗𝑒) ≃ ∗,

where 𝑓 ∗𝑒 → 𝑒 is a cartesian lift of 𝑓 at 𝑒. In particular, if 𝑥 is an initial object
of B, then an initial object in E𝑥 is also initial in E.

Lemma 5.5.3. Suppose 𝑝 : E→ B is a cartesian fibration such that for every 𝑏 ∈ B,
the fibre E𝑏 has an initial object, and let Einit ⊆ E be the full subcategory spanned by
the fibrewise initial objects. Then the restriction of 𝑝 to a functor

𝑝′ : Einit → B

is an equivalence. In particular, there exists a unique section 𝑠 of 𝑝 such that 𝑠 (𝑏) is
initial in E𝑏 for every 𝑏 ∈ B.

Proof. Since every fibre of 𝑝 has an initial object, 𝑝′ is essentially surjective. It
therefore suffices to show that 𝑝′ is fully faithful, but this follows from Obser-
vation 5.5.2. A section 𝑠 of 𝑝 whose values are fibrewise initial objects is then
precisely an inverse of the equivalence 𝑝′, and so is indeed unique. □

To complete the proof of Proposition 5.5.1 we first need an alternative de-
scription of the overcategories Fun/B(B,E)/𝑠 .

Notation 5.5.4. For 𝑝 : E→ B, we define ArB(E) to be the full subcategory of
Ar(E) on the arrows that lie over equivalences in B, i.e. the pullback

ArB(E) Ar(E)

B Ar(B);

Ar(𝑝 )
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note that ev𝑖 for 𝑖 = 0, 1 then restricts to a functor ArB(E) → E over B. For a
section 𝑠 : E→ B, we then define E//𝑠 by the pullback

E//𝑠 ArB(E)

B E.

𝑝/𝑠 ev1

𝑠

Then ev0 induces a functor E//𝑠 → E.

Exercise 5.5. Show that there is a natural equivalence

Ar(Fun/B (B,E)) ≃ Fun/B (B, ArB (E))

and a pullback square

Fun/B (B,E//𝑠 ) Fun/B (B, ArB (E))

{𝑠} Fun/B (B,E),

and conclude that there is a canonical equivalence

Fun/B (B,E)/𝑠 ≃ Fun/B (B,E//𝑠 )

over Fun/B (B,E)

Proposition 5.5.5. If 𝑝 : E → B is a cocartesian fibration, then ev1 : ArB(E) → E

is a cocartesian fibration, with the cocartesian morphisms being those that map to 𝑝-
cocartesian morphisms under ev0.

Proof. We first prove a morphism 𝛼 of ArB(E), given by a commutative square

𝑥 𝑥 ′

𝑦 𝑦′

𝑓

𝑠 𝑡

𝑔

such that 𝑓 is 𝑝-cocartesian, is a cocartesian morphism. For this we consider,
for an object 𝑞 : 𝑧 → 𝑤 in ArB(E), the commutative cube

ArB(E) (𝑡, 𝑞) ArB(E) (𝑠, 𝑞)

E(𝑥 ′, 𝑧) E(𝑥, 𝑧)

E(𝑦′,𝑤) E(𝑦,𝑤)

E(𝑥 ′,𝑤) E(𝑥,𝑤),
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from Exercise 3.9, where the left and right faces are pullbacks by Proposi-
tion 3.6.1. To show that 𝛼 is a cocartesian morphisms, we need to prove that the
back face of the cube is a pullback for any 𝑞. We claim that the front face of the
cube is a pullback, so that this follows from the 3-for-2 property. To see this,
observe that from 𝑝 we get a commutative cube

E(𝑥 ′, 𝑧) E(𝑥, 𝑧)

E(𝑥 ′,𝑤) E(𝑥,𝑤)

B(𝑝𝑥 ′, 𝑝𝑧) B(𝑝𝑥, 𝑝𝑧)

B(𝑝𝑥 ′, 𝑝𝑤) B(𝑝𝑥, 𝑝𝑤) .

𝑓 ∗

𝑞∗ 𝑞∗

𝑓 ∗

𝑝 (𝑓 )∗

𝑝 (𝑞)∗

𝑝 (𝑞)∗
𝑝 (𝑓 )∗

Here the front and back faces are pullbacks since 𝑓 is 𝑝-cocartesian, as is the
bottom face since 𝑝 (𝑞) is an equivalence. Hence the top face is indeed also a
pullback by the 3-for-2 property.

It remains to check that for any object 𝑥
𝑠−→ 𝑦 of ArB(E) and morphism

𝑔 : 𝑦 → 𝑦′, there exists a cocartesian lift of 𝑔 at 𝑠. For this we choose a 𝑝-

cocartesian lift 𝑓 : 𝑥 → 𝑥 ′ of 𝑝 (𝑔𝑠) at 𝑥 ; then 𝑔𝑠 factors uniquely as 𝑥
𝑓
−→ 𝑥 ′

𝑡−→ 𝑦

where 𝑡 lies over an equivalence in B. Then the commutative square

𝑥 𝑥 ′

𝑦 𝑧

𝑓

𝑠 𝑡

𝑔

is a morphism in ArB(E) where 𝑓 is 𝑝-cocartesian, so that this gives the required
cocartesian lift. □

Combining this with Proposition 3.5.15, we get:

Corollary 5.5.6. If 𝑝 : E→ B is a cocartesian fibration and 𝑠 is a section of 𝑝 , then
𝑝/𝑠 : E//𝑠 → B is a cocartesian fibration, with the cocartesian morphisms being those
that map to 𝑝-cocartesian morphisms under ev0. □

Proof of Proposition 5.5.1. We want to show that the (unique) fibewise terminal
section 𝑠 is a terminal object in Fun/B(B,E), i.e. that the forgetful functor

Fun/B(B,E)/𝑠 → Fun/B(B,E)

is an equivalence. By Exercise 5.5, we can identify this with the functor

Fun/B(B,E//𝑠) → Fun/B(B,E)
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given by composition with ev1/𝑠 : E//𝑠 → E. It therefore suffices to show that
ev1/𝑠 is an equivalence. But from Corollary 5.5.6 we know that this is a mor-
phism of cocartesian fibrations over B. By Proposition 3.5.14 it is therefore
enough to show it gives an equivalence on all fibres over B. But over 𝑏 ∈ B

the definition unpacks to give the forgetful functor E𝑏/𝑠 (𝑏 ) → E𝑏 , which is an
equivalence by our assumption that 𝑠 (𝑏) is a terminal object in E𝑏 . □

We can extend these constructions to a parametrized version of more gen-
eral slices:

Notation 5.5.7. For 𝑝 : E→ B, let EK
(B) denote the pullback

EK
(B) Fun(K,E)

B Fun(K,B) .

A section of EK
(B) over B then corresponds to a functor 𝜙 : B ×K→ E over B.

We define E//𝜙 by the pullback

E//𝜙 (EK
(B) )//𝜙

E EK
(B)

over B, where the bottom horizontal functor corresponds to the projection
E ×K→ E.

Observation 5.5.8. If 𝑝 : E→ B is a cocartesian fibration, then for any functor
𝜙 : B×K→ E over B, the∞-category E//𝜙 is a pullback of cocartesian fibrations
over B along morphisms of cocartesian fibrations, and so is itself a cocartesian
fibration over B.

Exercise 5.6. Show that there are natural equivalences

Fun/B (B ×K,E) ≃ Fun(K, Fun/B (B,E)) ≃ Fun/B (B,EK
(B) ) .

Use this to show that for 𝜙 : B ×K→ E over B, we have

Fun/B (B,E)/𝜙 ≃ Fun/B (B,E//𝜙 ).

Corollary 5.5.9. Let 𝑝 : E → B be a cocartesian fibration and consider a functor
𝜙 : K→ Fun/B(B,E), which corresponds to a commutative triangle

K ×B E

B.

prB 𝑝
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Suppose that for every 𝑏 ∈ B, the induced functor on fibres 𝜙𝑏 : K→ E𝑏 has a limit in
E𝑏 . Then the functor 𝜙 has a limit in Fun/B(B,E), given by the unique cone on 𝜙 that
selects the limit cone in each fibre.

Proof. We want to show that the ∞-category Fun/B(B,E)/𝜙 has a terminal ob-
ject. Using Exercise 5.6, we can identify this as the ∞-category Fun/B(B,E//𝜙 )
of sections of the cocartesian fibration 𝑝/𝜙 : E//𝜙 → B. Unpacking the defini-
tion, the fibre of this over 𝑏 ∈ B is E𝑏/𝜙𝑏 , which by assumption has a terminal
object. By Proposition 5.5.1, the fibration 𝑝/𝜙 therefore has a unique section
given by these terminal objects fibrewise, and this is the terminal object of
Fun/B(B,E//𝜙 ). □

Corollary 5.5.10. Suppose 𝜙 : K → Fun(B,C) is a functor such that 𝜙 (–, 𝑏) has a
limit in C for all 𝑏 ∈ B. Then 𝜙 has a limit in Fun(B,C), given by the unique cone on
𝜙 that selects the limit cone of 𝜙 (–, 𝑏) for each 𝑏 ∈ B.

Proof. Apply Corollary 5.5.9 to the cocartesian fibration prB : C ×B→ B. □

Corollary 5.5.11. Suppose 𝜙 : A × B → C is a functor such that 𝜙 (𝑎, –) : B → C

has a limit for all 𝑎 ∈ A. Let 𝜓 : B → C be the limit of 𝜙 viewed as a functor
B→ Fun(A,C), which exists by Corollary 5.5.10. Then 𝜙 has a limit in C if and only
if 𝜓 does so, and these limits are equivalent if either exists. In other words, we have an
equivalence

limA×B 𝜙 ≃ lim𝑎∈A
(
limB 𝜙 (𝑎, –)

)
.

Proof. We have a commutative diagram

C/𝜙 Fun(B,C)/𝜙 Fun(A ×B,C)/𝜙

C Fun(B,C) Fun(A ×B,C)

where the right and composite squares are pullbacks (and we abuse notation by
writing 𝜙 also when we view this as a functor A → Fun(B,C)). Then the left
square is also a pullback by the 3-for-2 property. But here 𝜓 is the limit of 𝜙 in
Fun(B,C), so we have an equivalence Fun(B,C)/𝜙 ≃ Fun(B,C)/𝜓 over Fun(B,C).
This pulls back to an equivalence C/𝜙 ≃ C/𝜓 of right fibrations over C. The
limit of 𝜙 is a terminal object of C/𝜙 ; this exists if and only if the equivalent
∞-category C/𝜓 has a terminal object, which gives the required equivalence of
limits. □

Remark 5.5.12. The formula for iterated limits in Corollary 5.5.11 can be gen-
eralized to describe limits of the form lim𝑎∈A limΦ(𝑎) 𝜙𝑎, where Φ is a functor
Aop → Cat∞, as limits indexed over the cartesian fibration for Φ. It is possible to
generalize the proof strategy we have used to also cover this case, but it requires
more involved constructions (cf. [Lur09, §4.2.2]), using in particular the right
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adjoint to pullback along a cartesian fibration, which we have not introduced.
We will instead prove this in a different way in §7.4

Observation 5.5.13. Given a functor 𝜙 : A×B→ C such that 𝜙 (𝑎, –) and 𝜙 (–, 𝑏)
have limits in C, for all 𝑎 ∈ A and 𝑏 ∈ B, we get an equivalence

lim𝑎∈A limB 𝜙 (𝑎, –) ≃ limA×B 𝜙 ≃ lim𝑏∈B limA 𝜙 (–, 𝑏)

if any of these three limits exist (since then they all exist and are equivalent).

As another application of Corollary 5.5.9, we can describe limits in the limit
of a diagram of ∞-categories:

Corollary 5.5.14. Suppose C is the limit of a functor 𝐹 : K → Cat∞ and consider a
functor 𝜙 : L→ C. If the composite 𝜙𝑘 : L→ C→ 𝐹 (𝑘) has a limit for every 𝑘 , and
these limits are preserved by the functor 𝐹 (𝑓 ) for every morphism 𝑓 in K, then 𝜙 has a
limit in C, and the limit cone is the unique cone that maps to the limit cone of 𝜙𝑘 for
each 𝑘 .

Proof. Let 𝑝 : E → K be the cocartesian fibration for 𝐹 . Then the limit C is
the ∞-category Funcoct

/K (K,E) by Proposition 5.3.4, which is a full subcategory
of Fun/K(K,E). By Corollary 5.5.9, 𝜙 has a limit in Fun/K(K,E), given by the
unique cone that picks out the limit cone in each fibre E𝑘 ≃ 𝐹 (𝑘). By assump-
tion, this limit is furthermore a cocartesian section of 𝑝, so that it is also the limit
in the full subcategory Funcoct

/K (K,E) by Corollary 5.4.6. □

Corollary 5.5.15. Suppose 𝐹 : K → Cat∞ is a functor such that the ∞-category
𝐹 (𝑘) has L-shaped limits for all 𝑘 ∈ K, and the functor 𝐹 (𝑓 ) preserves these for all
morphisms 𝑓 in K. Then the ∞-category limK 𝐹 also has L-shaped limits, and the
functors limK 𝐹 → 𝐹 (𝑘) in the limit cone preserve these. □

5.6 (Co)limits in slices

In this section we will describe limits in over- and undercategories. We start
with overcategories, for which we use the following:

Proposition 5.6.1. Consider functors 𝑝 : K→ C and 𝑞 : L→ C/𝑝 , and let 𝑞′ be the
diagram L★K→ C corresponding to 𝑞. Then there is an equivalence of ∞-categories

(C/𝑝)/𝑞 ≃ C/𝑞′

over C.
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Proof. For any ∞-category A, we have a commutative diagram

Map(A, (C/𝑝)/𝑞) Map(A★L,C/𝑝) Map(A★L★K,C)

{𝑞} Map(L,C/𝑝) Map(L★K,C)

{𝑝} Map(K,C)

where all the squares are pullbacks. But the composite square in the top row
is also the pullback square for Map(A,C/𝑞′), so (since the Yoneda embedding is
fully faithful) we have the required equivalence. □

Corollary 5.6.2. Let 𝑝, 𝑞, 𝑞′ be as above. Then a cone 𝑞 : L⊳ → C/𝑝 for 𝑞 is a limit
cone if and only if the associated cone 𝑞′ : L⊳ ★ K → C is a limit cone for 𝑞′. In
particular, 𝑞 has a limit in C/𝑝 if and only if 𝑞′ has a limit in C. □

As an important special case, we note:

Corollary 5.6.3. For 𝑐 ∈ C, consider 𝑞 : L → C/𝑐 corresponding to 𝑞′ : L⊲ → C. A
cone 𝑞 for 𝑞 is a limit cone if and only if the associated cone 𝑞′ is a limit cone for 𝑞′. In
particular, 𝑞 has a limit in C/𝑐 if and only if 𝑞′ has a limit in C. □

Corollary 5.6.4. The ∞-category C/𝑐 has all limits of shape L if and only if C has
limits for all diagrams of shape L⊲ that take the cone point to 𝑐 . □

Example 5.6.5. For 𝑐 ∈ C, the product of 𝑥 → 𝑐 and 𝑦 → 𝑐 in C/𝑐 (a limit over
{0, 1}) is the pullback 𝑥 ×𝑐 𝑦 in C (a limit over {0, 1}⊲).

Now we turn to undercategories, for which we need (the dual of ) the fol-
lowing observation about initial objects:

Proposition 5.6.6. The following are equivalent for an object 𝑥 of an∞-category C:

(1) 𝑥 is initial.

(2) There exists a section of the forgetful functor C𝑥/ → C that takes 𝑥 to id𝑥 .

(3) There exists a cone 𝛾 : C⊳ → C on idC that takes −∞ → 𝑥 to id𝑥 .

Proof. The object 𝑥 is initial if and only if the forgetful functor 𝑝 : C𝑥/ → C is an
equivalence. A section 𝑠 of 𝑝 is an inverse to 𝑝 if and only if the composite C𝑥/

𝑝
−→

C
𝑠−→ C𝑥/ is homotopic to the identity. But this functor is uniquely determined

by where it sends id𝑥 by Corollary 4.2.2, which means that 𝑠 is inverse to 𝑝

if and only if 𝑠 (𝑥) ≃ id𝑥 . Thus the first two conditions are equivalent. But a
section of 𝑝 corresponds to a cone C⊳ → C that restricts to the identity on C

and takes the cone point to 𝑥 . Such a cone then corresponds to an inverse of 𝑝
precisely when it takes the map −∞ → 𝑥 to id𝑥 . □
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Corollary 5.6.7. For any∞-category K, the cone point −∞ in K⊳ is an initial object.

Proof. We must construct 𝛾 : (K⊳)⊳ → K⊳ that restricts to the identity on K⊳

and takes the map between the two cone points in the source to id−∞. But here

(K⊳)⊳ ≃ [1] ★K,

and we can take the map 𝑠0 ★ idK : [1] ★K→ [0] ★K. □

Proposition 5.6.8. Suppose C has a terminal object 𝑥 . Then for any functor 𝑝 : K→
C, the ∞-category C𝑝/ has a terminal object, which is the unique object that lies over 𝑥 .

Proof. Since C/𝑥 → C is an equivalence, any diagram L → C has a unique
extension L⊲ → C taking the cone point to 𝑥 . In particular, there is a unique
cocone 𝑝′ on 𝑝 taking the cone point to 𝑥 , and we need to prove that this is
a terminal object of C𝑝/. For this we consider the extension of the canonical
functor K★C𝑝/ → C over K★C𝑝/★ [0] → C, which we can regard as a cocone

𝛾 : (C𝑝/)⊲ → C𝑝/,

which takes the cone point to 𝑝′. Applying (the dual of ) Proposition 5.6.6 it
suffices to show that 𝛾 takes the map 𝑝′ →∞ to the identity of 𝑝′. But this map
corresponds to a functor

(K⊲)⊲ → C

that restricts to 𝑝′ and takes the cone point to 𝑥 . By uniqueness this must cor-
respond to id𝑝′ . □

Observation 5.6.9. Consider 𝑓 : L ★K → C and let 𝑞 := 𝑓 |L, 𝑝 := 𝑓 |K; then
we get view 𝑓 as both a diagram

𝑝 : K→ C𝑞/

and as
𝑞 : L→ C/𝑝 .

In this case there is an equivalence

(C𝑞/)/𝑝 ≃ (C/𝑝)𝑞/

over C, since maps from an ∞-category A to either correspond to maps

L★A★K→ C

that restrict to 𝑓 on L★K.

Corollary 5.6.10. For𝑞 : L→ C and 𝑝 : K→ C𝑞/, let 𝑝′ : K→ C be the underlying
diagram in C. If 𝑝′ has a limit in C, then 𝑝 has a limit in C𝑞/, and the limit cone for 𝑝
is the unique lift of the limit cone for 𝑝′.
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Proof. By Observation 5.6.9 we have an equivalence

(C𝑞/)/𝑝 ≃ (C/𝑝′)𝑞′/,

where 𝑞′ is 𝑝 viewed as a functor L→ C/𝑝′ . The result then follows by applying
Proposition 5.6.8 to C/𝑝′ . □

Corollary 5.6.11. Suppose the ∞-category C has limits for all diagrams of shape K.
Then so does C𝑞/ for any diagram 𝑞 : L → C, and these are preserved by the forgetful
functor to C. □

5.7 (★) More on localizations

In this section we collect some further results on localizations.

Lemma 5.7.1. For any ∞-category K, we have

∥Kop∥ ≃ ∥K∥

Proof. For an ∞-groupoid 𝑋 , we get natural equivalences

Map(∥Kop∥, 𝑋 ) ≃ Map(Kop, 𝑋 )
≃ Map(K, 𝑋 op)
≃ Map(K, 𝑋 )
≃ Map(∥K∥, 𝑋 ),

since 𝑋 op ≃ 𝑋 . □

Proposition 5.7.2. If C is an ∞-category and 𝑋 is an ∞-groupoid, then Fun(C, 𝑋 )
is an ∞-groupoid. Hence in the commutative square

Map(∥C∥, 𝑋 ) Map(C, 𝑋 )

Fun(∥C∥, 𝑋 ) Fun(C, 𝑋 ),

∼

∼ ∼

∼

all the morphisms are equivalences.

Proof. We have a commutative triangle

Map(C, 𝑋 )

Map( [1], Fun(C, 𝑋 )) Map(C, Ar(𝑋 )),

∼

∼

where the horizontal and right diagonal maps are equivalences. Hence the left
diagonal is also an equivalence, as required. □
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Corollary 5.7.3. For ∞-categories C,D, the canonical map ∥C×D∥ → ∥C∥ × ∥D∥
is an equivalence.

Proof. For an ∞-groupoid 𝑋 we have natural equivalences

Map(∥C ×D∥, 𝑋 ) ≃ Map(C ×D, 𝑋 )
≃ Map(C, Fun(D, 𝑋 ))
≃ Map(C,Map(∥D∥, 𝑋 ))
≃ Map(∥C∥,Map(∥D∥, 𝑋 ))
≃ Map(∥C∥ × ∥D∥, 𝑋 ) .

Tracing this through, we see that this given by composition with the the canon-
ical map ∥C ×D∥ → ∥C∥ × ∥D∥, so that this is an equivalence. □

Proposition 5.7.4. Consider a functor 𝐿 : C → C′ and a collection 𝑆 of morphisms
in C that are taken to equivalences by 𝐿. Then the following are equivalent:

(1) 𝐿 exhibits C′ as the localization C[𝑆−1] .

(2) For any ∞-category D, composition with 𝐿 gives a fully faithful functor

𝐿∗ : Fun(C′,D) ↩→ Fun(C,D),

whose image is precisely the functors that take the morphisms in 𝑆 to equivalences.

(3) Composition with 𝐿 gives a fully faithful functor

𝐿∗ : Fun(C′,Gpd∞) ↩→ Fun(C,Gpd∞),

whose image is precisely the functors that take the morphisms in 𝑆 to equivalences.

Lemma 5.7.5. Let ℓ : C → ∥C∥ be the localization of an ∞-category C to an ∞-
groupoid. Then the functor

ℓ∗ : Fun(∥C∥,D) → Fun(C,D)

given by composition with ℓ is fully faithful for any ∞-category D, with image those
functors that take all morphisms in C to equivalences in D.

Proof. Unpacking the definitions, to see that ℓ∗ is fully faithful we must show
that the square

Map(C, Ar(D)≃) Map(C, Ar(D))

Map(C,D≃ ×D≃) Map(C,D ×D)

is a pullback. This holds because Ar(D) → D × D is conservative by Proposi-
tion 2.5.5. □
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Proof of Proposition 5.7.4. Since 𝐿 takes the morphisms in 𝑆 to equivalences, we
have for any ∞-category D a commutative square

Fun(C′,D) Fun(C,D)

Fun(∥C𝑆 ∥,D) Fun(C𝑆 ,D) .

𝐿∗

Here we know the bottom horizontal map is fully faithful by Lemma 5.7.5. If
(1) holds then this square is a pullback, so that 𝐿∗ is also fully faithful (by the dual
of Lemma 2.4.7), and its image is as required by the pullback square on cores.
Conversely, if (2) holds, then Exercise 2.16 implies that the square is a pullback if
and only if it is one on sets after applying 𝜋0(–)≃, and this is true by the assumed
description of the image of 𝐿∗; then we have in particular a pullback on cores,
which gives (1).

(3) is a special case of (2), so it remains to prove that it implies the gen-
eral case. Using the Yoneda embedding D ↩→ PSh(D), we get a fully faithful
functor

Fun(A,D) ↩→ Fun(A, PSh(D)) ≃ Fun(Dop, Fun(A,Gpd∞)),

so that 𝐿∗ fits in a commutative diagram

Fun(C′,D) Fun(C,D)

Fun(Dop, Fun(C′,Gpd∞)) Fun(D, Fun(Cop,Gpd∞)),

𝐿∗

Fun(Dop,𝐿∗ )

where the bottom horizontal functor is fully faithful by Corollary 2.6.4. It fol-
lows that 𝐿∗ is fully faithful, and its image is those functor 𝐹 : C→ D such that
for every 𝑑 ∈ D the functor D(𝐹 (–), 𝑑) takes the morphisms in 𝑆 to equiva-
lences; but by Lemma 2.9.6 this is equivalent to 𝐹 taking these morphisms to
equivalences in D. □

Lemma 5.7.6. Localizations are left orthogonal to conservative functors.

Proof. From Lemma 2.4.7 we know left orthogonal maps are closed under cobase
change, so it suffices to show that a conservative functor 𝐹 : C→ D is right or-
thogonal to K→ ∥K∥ for any ∞-category K. This amounts to the square

Map(K,C≃) Map(K,D≃)

Map(K,C) Map(K,D)

being a pullback, which follows from Exercise 2.13. □
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Lemma 5.7.7. For ∞-categories K,L we have a pushout

L ×K≃ ∥L∥ ×K≃

L ×K ∥L∥ ×K.

Proof. We must show that we get a pullback on maps to any∞-category C. The
resulting square we can rewrite as

Map(∥L∥, Fun(K,C)) Map(L, Fun(K,C))

Map(∥L∥, Fun(K≃,C)) Map(L, Fun(K≃,C)) .

This is a pullback since composition with the essentially surjective functorK≃ →
K gives a conservative functor Fun(K,C) → Fun(K≃,C)by Exercise 2.18, and lo-
calizations are left orthogonal to conservative functors by Lemma 5.7.6. □

Lemma 5.7.8. Consider a localization 𝐿 : C→ C[𝑆−1] . For any ∞-category K, the
product C × K → C[𝑆−1] × K is the localization of C × K at the morphisms whose
components in C lie in 𝑆 .

Proof. Consider the commutative diagram

C𝑆 ×K≃ ∥C𝑆 ∥ ×K≃

C𝑆 ×K ∥C𝑆 ∥ ×K

C ×K C[𝑆−1] ×K.

Here the bottom square is a pushout since (–) ×K preserves these, and the top
square is a pushout by Lemma 5.7.7. This exhibits C[𝑆−1] ×K as a localization
since ∥C𝑆 ∥ ×K≃ ≃ ∥C𝑆 ×K≃∥ by Corollary 5.7.3. □

Proposition 5.7.9. Suppose 𝐿 : D→ C is a functor such that there exist

▶ a fully faithful functor 𝑖 : C→ D,

▶ a natural equivalence 𝐿𝑖 ≃ idC,

▶ and a natural transformation 𝜂 : idD → 𝑖𝐿 such that 𝐿𝜂 is an equivalence.1

Then 𝐿 is a localization.
1We may also take 𝜂 : 𝑖𝐿 → idD here.
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Proof. Let Λ : D→ D[𝑆−1] be the localization of D at the collection 𝑆 of mor-
phisms inverted by 𝐿; then 𝐿 factors as

D
Λ−→ D[𝑆−1] 𝐿′−→ C;

we want to show that 𝐿′ is an equivalence with inverse 𝑖′ := Λ𝑖. By assump-
tion we have 𝐿′𝑖′ ≃ 𝐿𝑖 ≃ idC. For the other direction we consider the natural
transformation Λ𝜂 : Λ→ Λ𝑖𝐿 ≃ 𝑖′𝐿′Λ. By Lemma 5.7.8 this factors as

D × [1] Λ×id−−−−→ D[𝑆−1] × [1]
𝜂′

−→ D[𝑆−1],

where 𝜂′ is a transformation idD[𝑆−1 ] → 𝑖′𝐿′. But since all components of 𝜂 also
lie in 𝑆 , the transformation 𝜂′ is in fact a natural equivalence, as required. □
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Chapter 6

Free fibrations, adjunctions and
cofinality

6.1 Free fibrations

In this section we study free (co)cartesian fibrations, which turn out to be useful
surprisingly often.

Notation 6.1.1. Given functors 𝐹 : A→ C,𝐺 : B→ C, we write A−→×CB for the
pullback

A
−→×CB Ar(C)

A ×B C × C.

(ev0,ev1 )

𝐹×𝐺

An object of A−→×CB then consists of 𝑎 ∈ A, 𝑏 ∈ B and a morphism 𝐹 (𝑎) → 𝐺 (𝑏)
in C. This construction has a number of names in the literature: it is often called
the oriented, directed or lax pullback of 𝐹 and𝐺 ; for mysterious historical reasons
it is also referred to as the “comma construction”.

Definition 6.1.2. Given a functor 𝐹 : A→ B we write

Fcoct(𝐹 ) := A
−→×BB ≃ A ×B Ar(B) → B,

where the pullback is over 𝐹 and ev0 and the map to B is induced by ev1. Dually,
we write

Fcart(𝐹 ) := B
−→×BA→ B,

with the functor to B induced by ev0.

Observation 6.1.3. By Lemma 4.3.10, the functor A−→×CB→ A×B is a bifibra-
tion for any 𝐹,𝐺 . In particular, Fcoct(𝐹 ) is a cocartesian fibration over B, with
the cocartesian morphisms being those that map to equivalences in A. Dually,
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Fcart(𝐹 ) is a cartesian fibration, with the cartesian morphisms being those that
map to equivalences in A.

The functor 𝑠∗0 : B → Ar(B) given by composition with the degeneracy
𝑠0 : [1] → [0] pulls back along any functor 𝐹 to a section 𝜂𝐹 : A→ F(co)cart(𝐹 ).
We will show that this exhibits F(co)cart(𝐹 ) as the free (co)cartesian fibration on
𝐹 , in the following sense:

Theorem 6.1.4. For any functor 𝐹 : A→ B and any (co)cartesian fibration 𝑝 : E→
B, composition with 𝜂𝐹 restricts to an equivalence

𝜂∗𝐹 : Fun(co)cart
/B (F(co)cart(𝐹 ),E)

∼−→ Fun/B(A,E) .

We will prove this by giving an explicit inverse. To describe this we first
make some observations about F(co)cart(𝑝) when 𝑝 is already a (co)cartesian
fibration:

Observation 6.1.5. When 𝑝 is a cocartesian fibration, we can interpret Propo-
sition 3.6.4 as providing an equivalence

Arcoct(E)
∼−→ Fcoct(𝑝)

over B, via the pullback square

Arcoct(E) E

Ar(B) B.

ev0

Ar(𝑝 ) 𝑝

ev0

Under this equivalence a cocartesian morphism in Fcoct(𝑝) corresponds to a
commutative square

• •

• •

∼

where the vertical morphisms are 𝑝-cocartesian and the top horizontal mor-
phism is an equivalence. By the 3-for-2 property from Lemma 3.5.3 it follows
that the bottom horizontal morphism is also cocartesian, so that

ev1 : Arcoct(E) → E

defines a morphism of cocartesian fibrations over B; we think of this as a mor-
phism

𝜖𝑝 : Fcoct(𝑝) → 𝑝

110



in Cocart(B). We also note that under the equivalence, the map 𝜂𝑝 corresponds
to the inclusion E ↩→ Arcoct(E) of the equivalences, so that the composite

E
𝜂𝑝−−→ Arcoct(E)

𝜖𝑝−−→ E

is homotopic to the identity. Moreover, the morphisms 𝜖𝑝 are natural in mor-
phisms of cocartesian fibrations — for any morphism of cocartesian fibrations

E1 E2

B,

𝜙

𝑝′1
𝑝2

there is a natural commutative square

Arcoct(E1) Arcoct(E2)

E1 E2,

Arcoct (𝜙 )

ev1 ev1

𝜙

which we can interpret as a square

Fcoct(𝑝1) Fcoct(𝑝2)

𝑝1 𝑝2

Fcoct (𝜙 )

𝜖𝑝1 𝜖𝑝2

𝜙

of cocartesian fibrations over B.

Proof of Theorem 6.1.4. We will prove the cocartesian case, by showing that 𝜂∗
𝐹

has an inverse 𝜏 , which takes

A E

B

𝜙

𝐹

𝑝

to the composite

A
−→×BB E

−→×BB E

B.

𝜙
−→×BB

Fcoct (𝐹 )
Fcoct (𝑝 )

𝜖𝑝

𝑝
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We will show that the composites of this with 𝜂∗
𝐹

in both directions give the
identity. On the one hand, for a morphism 𝜙 : 𝐹 → 𝑝 we have a natural diagram
over B

𝐹 𝑝

Fcoct(𝐹 ) Fcoct(𝑝) 𝑝,

𝜙

𝜂𝐹 𝜂𝑝
=

Fcoct (𝜙 ) 𝜖𝑝

which shows that 𝜂∗
𝐹
𝜏 (𝜙) ≃ 𝜙 , naturally in 𝜙 . For the other direction, we ap-

ply the naturality of 𝜖 in morphisms of cocartesian fibrations to a morphism
Fcoct(𝐹 ) → 𝑝. Note that here F2

coct(𝐹 ) ≃ Arcoct(Fcoct(𝐹 )) can be identified with
A×B Fun( [2],B), with 𝜖Fcoct (𝐹 ) : F2

coct(𝐹 ) → Fcoct(𝐹 ) given by restriction along
𝑑1 : {0 < 2} ↩→ [2] and Fcoct(𝜂𝐹 ) : Fcoct(𝐹 ) → F2

coct(𝐹 ) given by composition
with 𝑠1 : [2] → [1]. Since 𝑑1 ◦ 𝑠1 = id[1] , we see that for 𝜙 : Fcoct(𝐹 ) → 𝑝 there
is a natural commutative diagram

Fcoct(𝐹 ) F2
coct(𝐹 ) Fcoct(𝑝)

Fcoct(𝐹 ) 𝑝,

Fcoct (𝜂𝐹 )

=

Fcoct (𝜙 )

𝜖Fcoct (𝐹 ) 𝜖𝑝

𝜙

which shows that 𝜏𝜂∗
𝐹
≃ id. □

6.2 Representable bifibrations

As a consequence of Theorem 6.1.4, the free (co)cartesian fibrations also have
universal properties as bifibrations:

Proposition 6.2.1. Let 𝑝 : E→ A ×B be a bifibration.

(i) Given a functor 𝐹 : A→ B, restriction along

𝜂𝐹 : A→ A
−→×BB ≃ (𝐹, id)∗Ar(B)

induces an equivalence

Map/A×B((𝐹, id)∗Ar(B),E) ≃ Map/A×B(A,E) .

(ii) Given a functor 𝐺 : B→ A, restriction along

𝜂𝐺 : A→ A
−→×AB ≃ (id,𝐺)∗Ar(A)

induces an equivalence

Map/A×B((id,𝐺)∗Ar(A),E) ≃ Map/A×B(B,E) .
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Proof. We prove the first case. Here we know that A−→×BB → B is the free
cocartesian fibration on 𝐹 , so that

Funcoct
/B (A

−→×BB,E) Fun/B(A,E)

Funcoct
/B (A

−→×BB,A ×B) Fun/B(A,A ×B)

∼

∼

with the horizontal maps being equivalences. We then get an equivalence on
fibres

Map/A×B(A
−→×BB,E) ≃ Map/A×B(A,E),

since any functor A
−→×BB → E over A × B automatically preserves cartesian

morphisms over A by Observation 4.3.4. □

As a special case, we can identify the free bifibration on an ∞-category C:

Corollary 6.2.2. For any ∞-category C, Ar(C) → C × C is the free bifibration on
C

Δ−→ C × C, in the sense that composition with 𝑠∗0 gives an equivalence

Fun/C×C(Ar(C),E)
∼−→ Fun/C×C(C,E)

for any bifibration E→ C × C. □

Definition 6.2.3. We say a bifibration 𝑝 : E→ A ×B is

▶ corepresentable if for every 𝑎 ∈ A, the left fibration E𝑎 → B is corepre-
sentable, i.e. E𝑎 has an initial object,

▶ representable if for every 𝑏 ∈ B, the right fibration E𝑏 → A is representable,
i.e. E𝑏 has a terminal object,

▶ birepresentable if it is both representable and corepresentable.

Proposition 6.2.4. For a bifibration 𝑝 : E→ A ×B, we have:

▶ 𝑝 is corepresentable if and only if there exists a functor 𝐹 : A→ B and an equiv-
alence E ≃ (𝐹, id)∗Ar(B) over A ×B.

▶ 𝑝 is representable if and only if there exists a functor 𝐺 : B→ A and an equiva-
lence E ≃ (id,𝐺)∗Ar(A) over A ×B.

Proof. We prove the first case. To start with, we note that (𝐹, id)∗Ar(B) is always
corepresentable, since its fibre at 𝑎 ∈ A is B𝐹 (𝑎)/ → B. Now we suppose that 𝑝
is a corepresentable bifibration. Let E0 denote the full subcategory of E on the
fibrewise initial objects over A; then 𝑝A is a cartesian fibration with fibrewise
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initial objects, so that the restriction of 𝑝A to 𝑞 : E0 → A is an equivalence by
Lemma 5.5.3. If we set 𝐹 := 𝑝B𝑞−1 we then have a commutative triangle

A E

A ×B.

𝑞−1

(id,𝐹 ) 𝑝

By Proposition 6.2.1 this extends uniquely to a commutative triangle

(𝐹, id)∗Ar(B) E

A ×B,

𝜙

𝑝

and we claim that 𝜙 is an equivalence. It suffices to check this on fibres over
𝑎 ∈ A, where we get a functor B𝐹 (𝑎)/ → E𝑎 over B; this is an equivalence since
by construction it takes id𝐹 (𝑎) to the initial object of E𝑎. □

In the next section we will see that birepresentable bifibrations correspond
to adjunctions. We can also identify the bifibrations that correspond to equiva-
lences:

Proposition 6.2.5. The following are equivalent for a bifibration 𝑝 : E→ A ×B:

(1) E is both corepresentable and representable, and an object of E is fibrewise terminal
over A if and only if it is fibrewise initial over B.

(2) There exists an ∞-category C and an equivalence of bifibrations

Ar(C) E

C × C A ×B

∼

𝛼×𝛽

where 𝛼 and 𝛽 are equivalences.

Proof. Given (1), we take C to be the full subcategory of E on the fibrewise
initial/terminal objects. Then 𝛼 := 𝑝A |C and 𝛽 := 𝑝B |C are both equivalences by
Lemma 5.5.3, so we have a commutative square

C E

C × C A ×B.
𝛼×𝛽
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Now Corollary 6.2.2 implies that we can extend the top horizontal morphism
over Ar(C) to

Ar(C) E

C × C A ×B,
𝛼×𝛽

and we want to prove that the functor Ar(C) → E is an equivalence. For this it
suffices to check on fibres over each 𝑥 ∈ C in the second variable, where we get
a morphism of right fibrations

C/𝑥 E𝛽 (𝑥 )

C A.𝛼

But this is an equivalence since 𝑥 is terminal in E𝛽 (𝑥 ) . This proves (2). For the
converse, it suffices to observe that the fibrewise terminal and initial objects in
Ar(C) are both given by the objects that are equivalences in C. □

Observation 6.2.6. Let 𝑝 : E → C × C be the bifibration obtained from un-
straightening C(–, –) in the “wrong” order (first to a functor Cop → LFib(C)
and then to a cartesian fibration E → C over C × C). Then from naturality
of straightening we can conclude that Proposition 6.2.5 applies to 𝑝. It follows
that 𝑝 straightens to C(–, –), but potentially composed with an autoequivalence
of C. Since I can’t prove that this is homotopic to idC, we have to assume the
following:

Fact 6.2.7. Straightening the bifibration Ar(C) → C × C in both orders produces the
same functor

C(–, –) : Cop × C→ Gpd∞.

For our discussion of adjunctions below the following special case of Propo-
sition 6.2.1 (which I learned from [RV22, §3.5]) will be particularly useful:

Corollary 6.2.8.

(1) For functors 𝐺 : C→ B, 𝐹 : B→ A, 𝑃 : C→ A, the ∞-groupoid

Map/B×C((id,𝐺)∗Ar(B), (𝐹, 𝑃)∗Ar(A))

is equivalent to the ∞-groupoid NatC,A(𝐹𝐺, 𝑃) of natural transformations. The
equivalence takes a natural transformation 𝛼 : 𝐹𝐺 → 𝑃 to a map over B×C given
at (𝑏, 𝑐) by the composite

B(𝑏,𝐺𝑐)
(𝐹 )
−−→ A(𝐹𝑏, 𝐹𝐺𝑐)

𝛼𝑐,∗−−−→ A(𝐹𝑏, 𝑃𝑐) .
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(2) For functors 𝐹 : B→ C, 𝑄 : B→ A, 𝐺 : C→ A, the ∞-groupoid

Map/B×C((𝐹, id)∗Ar(C), (𝑄,𝐺)∗Ar(A))

is equivalent to the ∞-groupoid NatC,A(𝑄,𝐺𝐹 ) of natural transformations. The
equivalence takes a natural transformation 𝛽 : 𝑄 → 𝐺𝐹 to a map over B×C given
at (𝑏, 𝑐) by the composite

C(𝐹𝑏, 𝑐)
(𝐺 )
−−−→ A(𝐺𝐹𝑏,𝐺𝑐)

𝛽∗
𝑏−−→ A(𝑄𝑏,𝐺𝑐).

Proof. We prove the first part. By Proposition 6.2.1 there is an equivalence

Map/B×C((id,𝐺)∗Ar(B), (𝐹, 𝑃)∗Ar(A)) ≃ Map/B×C(C, (𝐹, 𝑃)∗Ar(A))

where we can further identify the right-hand side as

Map/A×A(C, Ar(A)) ≃


C Ar(A)

A ×A.
(𝐹𝐺,𝑃 )


Using that Ar(Fun(C,A)) ≃ Fun(C, Ar(A)), we can identify this as the mapping
∞-groupoid from 𝐹𝐺 to 𝑃 in Fun(C,A), i.e. the ∞-groupoid of natural trans-
formations 𝐹𝐺 → 𝑃 . It remains to show that the inverse of this equivalence is as
described. From the proof of Theorem 6.1.4 and the description of cocartesian
transport for Ar(A) in Example 3.6.8, we can identify the functor corresponding
to 𝛼 : C→ Ar(A) over 𝐹𝐺, 𝑃 as the composite

Ar(B) ×B C Ar(A) ×A Ar(A) Ar(A)

B A A

Ar(𝐹 )×𝛼

𝐹

=

where the second map is given by composition in A. The horizontal composite

thus takes 𝑏
𝜙
−→ 𝐺𝑐 to 𝐹𝑏

𝐹𝜙
−−→ 𝐹𝐺𝑐

𝛼𝑐−−→ 𝑃𝑐 as required. □

Exercise 6.1. Prove that the equivalence in Corollary 6.2.8 is compatible with compo-
sition, in the following way: Given functors 𝐹 : C→ D,𝐺 : D→ C, 𝑃 : D→ B, 𝑄 : C→
B and morphisms of bifibrations

(𝐹, id)∗Ar(D) → (id,𝐺)∗Ar(C) → (𝑃,𝑄)∗Ar(B)

corresponding to natural transformations 𝛼 : id → 𝐺𝐹 , 𝛽 : 𝑄𝐺 → 𝑃 , show that the
composite corresponds to the natural transformation

𝑄
𝑄𝛼
−−→ 𝑄𝐺𝐹

𝛽𝐹
−−→ 𝑃𝐹 .
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Proposition 6.2.9. For 𝑝 : E→ [1] , let 𝑖𝑠 : E𝑠 → E be the inclusion of the fibre at
𝑠 = 0, 1; we then have a bifibration1

(𝑖0, 𝑖1)∗Ar(E)
𝑞
−→ E0 × E1.

(1) 𝑝 is a cocartesian fibration if and only if 𝑞 is corepresentable, in which case 𝑞 is
equivalent to (𝐹, id)∗Ar(E1) where 𝐹 : E0 → E1 is the straightening of 𝑝 .

(2) 𝑝 is a cartesian fibration if and only if 𝑞 is representable, in which case 𝑞 is equivalent
to (id,𝐺)∗Ar(E0) where 𝐺 : E1 → E0 is the straightening of 𝑝 .

Proof. We prove the cocartesian case. Here 𝑞 is corepresentable if and only if
for all 𝑥 ∈ E0, the left fibration

E1,𝑥/ := E𝑥/ ×E E1 → E1

is corepresentable. This left fibration corresponds to the copresheaf E(𝑥, –) on
E1, while a cocartesian morphism 𝑓 : 𝑥 → 𝑦 in E over 0 → 1 is one such that
composing with it gives an equivalence

E1(𝑦, 𝑒) → E(𝑥, 𝑒)

for 𝑒 ∈ E1, i.e. 𝑓 exhibits E(𝑥, –) as represented by 𝑦. Thus the full subcategory
of (𝑖0, 𝑖1)∗Ar(E) of fibrewise initial objects is precisely the full subcategory of
Ar(E) on the cocartesian morphisms over 0 → 1, so that 𝑞 is corepresented by
the composite

E0
∼←− Arcoct(E)0→1 → E1,

which is also the straightening of 𝑝. □

6.3 Adjunctions

Definition 6.3.1. We say functors 𝐹 : C → D and 𝐺 : D → C are adjoint (with
𝐹 left adjoint to 𝐺 and 𝐺 right adjoint to 𝐹 ) if there exist natural transformations

𝜂 : idC → 𝐺𝐹, 𝜖 : 𝐹𝐺 → idD

(the unit and counit of the adjunction) such that the composite transformations

𝐹
𝐹𝜂
−−→ 𝐹𝐺𝐹

𝜖𝐹−−→ 𝐹, 𝐺
𝜂𝐺
−−→ 𝐺𝐹𝐺

𝐺𝜖−−→ 𝐺

are equivalent to identities (the “triangle identities”).

Notation 6.3.2. We will sometimes write 𝐹 ⊣ 𝐺 to mean “𝐹 is left adjoint to
𝐺”.

1This construction is in fact part of an equivalence between bifibrations and ∞-categories
over [1], with the inverse taking a bifibration 𝑞 : E→ A ×B to E × [1] ⨿E×{0,1} (A ⨿ B).
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Warning 6.3.3. We can interpret this definition as saying that an adjunction
of ∞-categories is an adjunction in the homotopy 2-category of ∞-categories.
If one wants to define the ∞-groupoid of coherent adjunction data correctly
one must be a bit more careful. One option is to specify only one of the two
transformations, say the unit, and require that this satisfies a property as follows:

Observation 6.3.4. For a functor 𝐹 : C→ D we have a commutative square

Ar(C) Ar(D)

C × C D ×D

Ar(𝐹 )

𝐹×𝐹

which straightens to a natural transformation

C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦)

of functors Cop × C→ Gpd∞.

Definition 6.3.5. Given functors 𝐹 : C→ D, 𝐺 : D→ C, a natural transforma-
tion 𝜂 : idC → 𝐺𝐹 is a unit transformation if the composite

D(𝐹𝑥,𝑦) → C(𝐺𝐹𝑥,𝐺𝑦) → C(𝑥,𝐺𝑦) (6.1)

is an equivalence for all 𝑥 ∈ C, 𝑦 ∈ D, where the first map comes from 𝐺 as in
Observation 6.3.4 and the second is given by composition with 𝜂.

Exercise 6.2. Consider a natural transformation 𝛼 : 𝐹 → 𝐺 of functors 𝐹,𝐺 : A → B.
By viewing 𝛼 as a functor A × [1] → B, we get a morphism of bifibrations

Ar(A) × Ar( [1]) Ar(B)

A × [1] ×A × [1] B ×B.

Show that from this we can extract a natural commutative square

C(𝑥,𝑦) D(𝐹𝑥, 𝐹𝑦)

D(𝐺𝑥,𝐺𝑦) D(𝐹𝑥,𝐺𝑦).

(𝐹 )

(𝐺 ) 𝛼𝑦,∗

𝛼∗𝑥

Proposition 6.3.6. The following are equivalent for functors 𝐹 : C→ D and𝐺 : D→
C:

(1) 𝐹 is left adjoint to 𝐺 .

(2) There exists a unit transformation 𝜂 : idC → 𝐺𝐹 .
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(3) There exists a natural equivalence D(𝐹–, –) ≃ C(–,𝐺–) of functors Cop ×D →
Gpd∞.

Proof. Suppose 𝐹 is left adjoint to 𝐺 , so there exists a unit 𝜂 and counit 𝜖. We
claim that the composite

C(𝑥,𝐺𝑦) → D(𝐹𝑥, 𝐹𝐺𝑦) → D(𝐹𝑥,𝑦)

where the first map is given by applying 𝐹 and the second by composition with
𝜖, is inverse to (6.1). Indeed, by naturality (applying Exercise 6.2 to 𝜖) we have
a commutative diagram

D(𝐹𝑥,𝑦) C(𝐺𝐹𝑥,𝐺𝑦) D(𝐹𝐺𝐹𝑥, 𝐹𝐺𝑦) D(𝐹𝐺𝐹𝑥,𝑦)

C(𝑥,𝐺𝑦) D(𝐹𝑥, 𝐹𝐺𝑦) D(𝐹𝑥,𝑦)

𝜖∗
𝐹𝑥

(𝐺 ) (𝐹 )

𝜂∗𝑥 𝐹𝜂∗𝑥

𝜖𝑦,∗

𝐹𝜂∗𝑥

(𝐹 )
𝜖𝑦,∗

where the composite of our two maps is the composition along the bottom, and
the composition along the top gives the identity by one of the triangle identities.
Similarly, the composition in the other order is also the identity, using the other
triangle identity.

Now suppose 𝜂 is a unit transformation. Then 𝜂 corresponds under Corol-
lary 6.2.8 to a morphism

(𝐹, id)∗Ar(D) → (id,𝐺)∗Ar(C)

of bifibrations over C ×D. Moreover, this is given over (𝑐, 𝑑) by the composite

D(𝐹𝑐, 𝑑) → C(𝐺𝐹𝑐,𝐺𝑑) → C(𝑐,𝐺𝑑),

which is an equivalence since 𝜂 is a unit transformation. Thus we have an equiv-
alence of bifibrations, which straightens to an equivalence as in (3).

Given the equivalence (3), we can conversely unstraighten this to an equiv-
alence of bifibrations

𝜙 : (𝐹, id)∗Ar(D) ∼−→ (id,𝐺)∗Ar(C)

over C × D. By Corollary 6.2.8, 𝜙 corresponds to a natural transformation
𝜂 : idC → 𝐺𝐹 , while 𝜙−1 corresponds to 𝜖 : 𝐹𝐺 → idD. The composite

(𝐹, id)∗Ar(D)
𝜙
−→ (id,𝐺)∗Ar(C)

𝜙−1

−−−→ (𝐹, id)∗Ar(D)

is the identity, but also corresponds to the composition

𝐹
𝐹𝜂
−−→ 𝐹𝐺𝐹

𝜖𝐹−−→ 𝐹

by Exercise 6.1, so this gives one of the triangle identities. The composite in the
other order similarly gives the other identity. □
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Corollary 6.3.7. The following are equivalent for a functor 𝐹 : C→ D:

(1) 𝐹 is a left adjoint (i.e. 𝐹 has a right adjoint).

(2) The corepresentable bifibration (𝐹, id)∗Ar(D) is also representable.

(3) The ∞-category C/𝑑 := C ×D D/𝑑 has a terminal object for all 𝑑 ∈ D.

(4) The presheaf D(𝐹 (–), 𝑑) on C is representable for all 𝑑 ∈ D.

(5) The cocartesian fibration F→ [1] corresponding to 𝐹 is also a cartesian fibration.

Dually, the following are equivalent for a functor 𝐺 : D→ C:

(1’) 𝐺 is a right adjoint (i.e. 𝐺 has a left adjoint).

(2’) The representable bifibration (id,𝐺)∗Ar(C) is also corepresentable.

(3’) The ∞-category D𝑐/ := D ×C C𝑐/ has an initial object for all 𝑐 ∈ C.

(4’) The copresheaf C(𝑐,𝐺 (–)) on D is corepresentable for all 𝑐 ∈ C.

(5’) The cartesian fibration G→ [1] corresponding to 𝐺 is also a cocartesian fibration.

Proof. By Proposition 6.3.6, a functor 𝐺 is right adjoint to 𝐹 if and only if there
is a natural equivalence of bifibrations

(𝐹, id)∗Ar(D) ≃ (id,𝐺)∗Ar(C);

The existence of such a𝐺 is equivalent to (𝐹, id)∗Ar(D) being a representable bi-
fibration by Proposition 6.2.4, and by definition this means that (𝐹, id)∗Ar(D)𝑑 ≃
C/𝑑 has a terminal object for all 𝑑 ∈ D. Since C/𝑑 → C is the right fibra-
tion for D(𝐹 (–), 𝑑), such a terminal object exists if and only if this presheaf
is representable. Finally, it follows from Proposition 6.2.9 that the bifibration
(𝐹, id)∗Ar(D) is representable if and only if the cocartesian fibration for 𝐹 is also
a cartesian fibration. □

Exercise 6.3. Show that if we have an adjunction 𝐹 ⊣ 𝐺 then on opposite∞-categories
we have 𝐺op ⊣ 𝐹 op.

Lemma 6.3.8. Suppose 𝐹 : C→ D has a right adjoint 𝐺 . Then for any ∞-category
A,

▶ the functor 𝐹 ∗ : Fun(D,A) → Fun(C,A) has as left adjoint 𝐺∗,

▶ the functor 𝐹∗ : Fun(A,C) → Fun(A,D) has as right adjoint 𝐺∗.

Proof. Suppose we have a unit 𝜂 : idC → 𝐺𝐹 and counit 𝜖 : 𝐹𝐺 → idD. Then
composition with these induce the required unit and counit transformations for
𝐺∗ ⊣ 𝐹 ∗, 𝐹∗ ⊣ 𝐺∗. □
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Lemma 6.3.9. Suppose 𝐹 : C → D and 𝐹 ′ : D → E have right adjoints 𝐺 ′ and 𝐺 ,
respectively. Then the composite 𝐹 ′𝐹 is left adjoint to 𝐺𝐺 ′.

Proof. We can either see that unit and counit transformations for the adjunctions
𝐹 ⊣ 𝐺 and 𝐹 ′ ⊣ 𝐺 ′ can be combined to produce a unit and counit for the
composites, or observe that we have equivalences

(𝐹 ′𝐹, id)∗Ar(E) ≃ (𝐹, id)∗(𝐹 ′, id)∗Ar(E)
≃ (𝐹, id)∗(id,𝐺 ′)∗Ar(D)
≃ (𝐹,𝐺 ′)∗Ar(D)
≃ (id,𝐺 ′)∗(𝐹, id)∗Ar(D)
≃ (id,𝐺 ′)∗(id,𝐺)∗Ar(C)
≃ (id,𝐺𝐺 ′)∗Ar(C),

which implies 𝐹 ′𝐹 ⊣ 𝐺𝐺 ′. □

Exercise 6.4. Show that if C has all limits of shapeK, then the constant diagram functor
C→ Fun(K,C) has a right adjoint, given by taking limits of such diagrams. Dually, if
C has all K-shaped colimits, the same functor has a left adjoint.

Proposition 6.3.10. Suppose 𝐹 is left adjoint to 𝐺 with unit 𝜂 and counit 𝜖 . Then:

(1) 𝐹 is fully faithful if and only if 𝜂 is a natural equivalence.

(2) 𝐺 is fully faithful if and only if 𝜖 is a natural equivalence.

Proof. We prove the first case. Here we have from Exercise 6.2 a natural com-
mutative diagram

C(𝑥,𝑦) D(𝐹𝑥, 𝐹𝑦)

C(𝐺𝐹𝑥,𝐺𝐹𝑦)

C(𝑥,𝐺𝐹𝑦)

(𝐹 )

𝜂𝑦,∗

(𝐺 )

𝜂∗𝑥

for all 𝑥,𝑦 ∈ C. Here the vertical composite is an equivalence, so that 𝜂∗𝑥 is an
equivalence if and only if the top horizontal map is an equivalence. This holds
for all 𝑦 if and only if 𝜂𝑥 is an equivalence in C, and this in turn holds for all 𝑥
if and only if 𝜂 is a natural equivalence. Thus 𝜂 is a natural equivalence if and
only if 𝐹 is fully faithful, as required. □

Corollary 6.3.11. Suppose 𝐹 : C→ D is left adjoint to 𝐺 : D→ C.

(1) If 𝐺 is fully faithful, then 𝐹 is a localization.

(2) If 𝐹 is fully faithful, then 𝐺 is a localization.
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Proof. We prove the first case; the second is proved similarly, or by observing
that localizations are closed under taking op. By Proposition 6.3.10 the counit
𝜖 : 𝐹𝐺 → id is a natural equivalence. For the unit 𝜂 we then have that 𝐹𝜂 is also
a natural equivalence, since the composite

𝐹
𝐹𝜂
−−→ 𝐹𝐺𝐹

𝜖𝐹−−→ 𝐹

is the identity and the second map is an equivalence. The conditions of Propo-
sition 5.7.9 therefore hold, so that 𝐹 is a localization. □

6.4 (★) Free left and right fibrations

In this section we will describe the free left and right fibrations on a functor,
i.e. the left adjoints to the fully faithful inclusions

LFib(B), RFib(B) ↩→ Cat∞/B,

and look at the morphisms that are inverted by these.

Observation 6.4.1. The universal property of the localization ∥–∥ : Cat∞ →
Gpd∞ says precisely that this is a left adjoint of the inclusion Gpd∞ ↩→ Cat∞. By
Lemma 6.3.8, this induces for any ∞-category K an adjunction

Fun(K, Cat∞) ⇄ Fun(K,Gpd∞) .

In terms of fibrations, this means that the fully faithful inclusions

LFib(K) ↩→ Cocart(K), RFib(K) ↩→ Cart(K)

have left adjoints (–)ℓ and (–)𝑟 , respectively. For a cocartesian fibration E→ K,
the left fibration Eℓ → K has fibre ∥E𝑘 ∥ at 𝑘 ∈ K.2

Lemma 6.4.2. The fully faithful inclusions LFib(K), RFib(K) ↩→ Cat∞/K have left
adjoints, given by 𝐿ℓ

K
:= Fcoct(–)ℓ and 𝐿𝑟

K
:= Fcart(–)𝑟 , respectively.

Proof. The inclusion LFib(K) ↩→ Cat∞/K factors as

LFib(K) ↩→ Cocart(K) → Cat∞/K;

its left adjoint is therefore the composite of the left adjoints of these two functors
by Lemma 6.3.9. □

Definition 6.4.3. A morphism 𝑓 in Cat∞/K is called a contravariant equivalence
if 𝐿𝑟

K
(𝑓 ) is an equivalence in RFib(K). (Dually, we say 𝑓 is a covariant equiva-

lence if 𝐿ℓ
K
(𝑓 ) is an equivalence in LFib(K), where 𝐿ℓ

K
is the localization to left

fibrations.)
2One can show that Eℓ is in fact the localization of E at the morphisms that lie over equiva-

lences in K, but we will hopefully not need this. . .
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Lemma 6.4.4. A morphism

C D

K

𝑓

𝑝 𝑞

in Cat∞/K is a contravariant equivalence if and only if for every 𝑘 ∈ K, the induced
morphism of ∞-groupoids

∥C ×K K𝑘/∥ → ∥D ×K K𝑘/∥

is an equivalence.

Proof. Since 𝐿𝑟 (𝑓 ) is a morphism of right fibrations, we can check that it is an
equivalence on fibres. At 𝑘 ∈ K the formula for Fcart(–)𝑟 tells us that we get
precisely the give morphism of ∞-groupoids. □

Proposition 6.4.5. Contravariant equivalences are closed under base change along
left fibrations. In other words, if the morphism 𝑓 : C → D over B is a contravariant
equivalence in Cat∞/B and 𝑝 : E→ B is a left fibration, then 𝑝∗ 𝑓 : C×B E→ D×B E

is a contravariant equivalence in Cat∞/E.

Proof. We use the criterion of Lemma 6.4.4. For 𝑒 ∈ E we note

(C ×B E) ×E E𝑒/ ≃ C ×B E𝑒/

and that we have a commutative square

C ×B E𝑒/ D ×B E𝑒/

C ×B B𝑝𝑒/ D ×B B𝑝𝑒/.

∼ ∼

Here the vertical maps are equivalences since E𝑒/ ≃ B𝑝𝑒/ by Lemma 3.3.10 as 𝑝
is by assumption a left fibration. It follows that the top horizontal map gives an
equivalence on localizations if the bottom horizontal map does so. □

Corollary 6.4.6. Suppose we have a pullback square

E′ E

B′ B

𝑓

𝑝′ 𝑝

𝑔
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where 𝑝 is a left fibration. Then the induced square

𝐿𝑟
E
(𝑓 ) E

𝐿𝑟
B
(𝑔) B

𝑝

is also a pullback.
Proof. Consider the commutative diagram

E′ 𝑝∗𝐿𝑟
B
(𝑔) E

B′ 𝐿𝑟
B
(𝑔) B,

𝑝∗𝜂

⌟
𝑝′

⌟
𝑝

𝜂

where the right-hand square is a pullback by definition, and the left square is
a pullback by 3-for-2. Here 𝜂 : B′ → 𝐿𝑟

B
(𝑔) is a contravariant equivalence in

Cat∞/B, so that 𝑝∗𝜂 is a contravariant equivalence in Cat∞/E by Proposition 6.4.5.
But the target of 𝑝∗𝜂 is also a right fibration over E, so this means that it exhibits
𝑝∗𝐿𝑟

B
(𝑔) as 𝐿𝑟

E
(𝑓 ), as required. □

Proposition 6.4.7. Suppose a functor 𝑓 : C→ D over B is a contravariant equiva-
lence in Cat∞/B. Then ∥ 𝑓 ∥ : ∥C∥ → ∥D∥ is an equivalence.
Proof. The functor

Cat∞/B
forget
−−−−→ Cat∞

∥–∥
−−−→→ Gpd∞

is left adjoint to

Gpd∞ ↩→ Cat∞
(–)×B
−−−−−→ Cat∞/B.

Here the right adjoint factors through the full subcategory RFib(B), which
means that the left adjoint factors through 𝐿𝑟

B
, as required. □

Lemma 6.4.8. Suppose 𝑝 : E→ B is a right fibration. Then a morphism

C D

E

𝑓

𝑔 ℎ

is a contravariant equivalence in Cat∞/E if and only if the morphism

C D

B

𝑓

𝑝𝑔 𝑝ℎ

is a contravariant equivalence in Cat∞/B.
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Proof. By Observation 8.1.1 we have an adjunction

𝑝! : Cat∞/E ⇄ Cat∞/B : 𝑝∗

where 𝑝! is given by composition with 𝑝 and 𝑝∗ by pullback along 𝑝. Since 𝑝
is a right fibration, this restricts the full subcategories of right fibrations as an
adjunction

𝑝! : RFib(E) ⇄ RFib(B) : 𝑝∗

We then have a commutative square

RFib(B) Cat∞/B

RFib(E) Cat∞/E

𝑝∗ 𝑝∗

of right adjoints. Since left adjoints compose and are unique, it follows that we
also have a commutative square of left adjoints

Cat∞/E RFib(E)

Cat∞/B RFib(B).

𝐿𝑟
E

𝑝! 𝑝!

𝐿𝑟
B

Since equivalences in RFib(B) are detected in Cat∞, it follows that for our mor-
phism 𝑓 : 𝑔 → ℎ in Cat∞/E, 𝐿𝑟

E
(𝑓 ) is an equivalence if and only if 𝑝 ◦ 𝐿𝑟

E
(𝑓 ) ≃

𝐿𝑟
B
(𝑝 ◦ 𝑓 ) is an equivalence. □

6.5 Cofinal functors

In this section we introduce cofinal and coinitial functors among∞-categories,
and show that these have a variety of useful characterizations.

Definition 6.5.1. An ∞-category C is weakly contractible if ∥C∥ ≃ ∗.

Definition 6.5.2. A functor 𝑝 : E→ B is cofinal if for all 𝑏 ∈ B, the∞-category
E𝑏/ := E ×B B𝑏/ is weakly contractible. Dually, 𝑝 is coinitial if for all 𝑏 ∈ B, the
∞-category E/𝑏 := E ×B B/𝑏 is weakly contractible.

Warning 6.5.3. The term cofinal comes from “cofinal subsequences” in analysis
— it does not mean these functors are dual to some class of “final” functors.
Unfortunately many authors ignore this, and in general there is a wide variety of
different naming conventions for cofinal and coinitial functors in the literature
(see Table 6.1 for an (incomplete) list thereof ).
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∥E𝑏/∥ ≃ ∗ ∥E/𝑏 ∥ ≃ ∗
This text, [Lan21] cofinal coinitial

[Lur09] cofinal (none)
[Lur17] left cofinal right cofinal
[Ker] right cofinal left cofinal

[RV22], [ML98] final initial
[Cis19] final cofinal

Table 6.1: Some terminology for cofinal/coinitial functors

For the rest of this section we will state and prove results for cofinal functors,
but of course the dual results for coinitial functors also hold, with the same
proofs.

Proposition 6.5.4. A functor 𝑝 : E→ B is cofinal if and only if 𝐿𝑟
B
(𝑝) is an equiv-

alence (where 𝑝 is viewed as a morphism 𝑝 → idB in Cat∞/B).

Proof. By Lemma 6.4.2 we can identify 𝐿𝑟
B
(𝑝) as the morphism of right fibra-

tions
(E ×B Ar(B))𝑟 B

B,

=

where on the left the map to B comes from ev0. This is an equivalence if and
only if it is so on all fibres over 𝑏 ∈ B, where we get

∥E ×B B𝑏/∥ → {𝑏},

which is by definition an equivalence for all 𝑏 if and only if 𝑝 is cofinal. □

Observation 6.5.5. Suppose 𝑝 : E→ B is a right fibration. Combining Propo-
sition 6.5.4 with Lemma 6.4.8 we see that a functor 𝑓 : C → E is cofinal if and
only if 𝑓 is a contravariant equivalence when viewed as a morphism 𝑝 𝑓 → 𝑝 in
Cat∞/B. For any functor 𝑔 : C→ B, we can consider the unit morphism

C E

B.

𝜂

𝑔 𝐿𝑟
B
(𝑔)

Here the adjunction identities imply that 𝜂 is a contravariant equivalence over
B; since 𝐿𝑟

B
(𝑔) is a right fibration, it follows that 𝜂 is cofinal. Thus any functor

has a factorization as a cofinal functor followed by a right fibration.

Corollary 6.5.6. A functor 𝑝 : E→ B is cofinal if and only if it is left orthogonal to
all right fibrations.
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Proof. The functor 𝑝 is left orthogonal to a right fibration 𝑞 : P→ C when the
commutative square

Map(B,P) Map(B,C)

Map(E,P) Map(E,C)

is a pullback, which we can check on fibres over each map 𝑓 : B→ C. The map
on fibres at 𝑓 we can identify as the morphism

Map/B(B, 𝑓 ∗P) → Map/B(E, 𝑓 ∗P)

given by composition with 𝑝. It follows that 𝑝 is left orthogonal to all right
fibrations if and only if for any right fibration Q → B, composition with 𝑝

gives an equivalence

Map/B(B,Q) → Map/B(E,Q).

By adjunction, this is equivalent to 𝐿𝑟
B
(𝑝) being an equivalence, which we saw

characterized 𝑝 as cofinal in Proposition 6.5.4. □

Corollary 6.5.7. If 𝑝 : E→ B is cofinal, then for any functor 𝜙 : B→ C, the induced
morphism of overcategories

C𝜙/ → C𝜙𝑝/

is an equivalence.

Proof. This is a morphism of left fibrations over C, so it suffices to show it gives
an equivalence on fibres over each 𝑥 ∈ C. The fibre of C𝜙/ at 𝑥 we can identify
with the∞-groupoid of maps B⊲ → C that restrict to 𝜙 on B and take the cone
point to 𝑥 ; this is also the fibre at 𝜙 of

Fun(B,C/𝑥 ) → Fun(B,C),

i.e. Map/B(B, 𝜙∗C/𝑥 ), and we can identify the morphism on fibres at 𝑥 as the
map

Map/B(B, 𝜙∗C/𝑥 ) → Map/B(E, 𝜙∗C/𝑥 )

given by composition with 𝑝. If 𝑝 is cofinal, then this is an equivalence by
Proposition 6.5.4, as required. □

Corollary 6.5.8. If 𝑝 : E→ B is cofinal, then a functor 𝜙 : B→ C has a colimit in
C if and only if 𝜙𝑝 has a colimit, in which case the canonical map

colimE 𝜙𝑝 → colimB 𝜙

is an equivalence.
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Proof. By Corollary 6.5.7 composition with 𝑝 induces an equivalence : C𝜙/
∼−→

C𝜙𝑝/ over C. Thus C𝜙/ has an initial object if and only if C𝜙𝑝/ does so. The
canonical map on colimits is the image in C of the unique map from the initial
object of C𝜙𝑝/ to the image of that of C𝜙/, so this is moreover an equivalence if
these initial objects exist. □

We now consider some first examples of coinitial and cofinal functors:

Proposition 6.5.9. Any localization is both cofinal and coinitial.

Proof. Right and left fibrations are in particular conservative (Exercise 3.1), so a
localization is left orthogonal to these by Lemma 5.7.6. □

Proposition 6.5.10. For an object 𝑥 ∈ C, the functor {𝑥} → C is cofinal if and only
if 𝑥 is a terminal object, and coinitial if and only if 𝑥 is an initial object.

Proof. The functor {𝑥} → C is cofinal if for all 𝑐 ∈ C, the ∞-category

{𝑥} ×C C𝑐/ ≃ C(𝑐, 𝑥)

is weakly contractible, i.e. contractible as this is an ∞-groupoid; this says pre-
cisely that 𝑥 is a terminal object. □

Corollary 6.5.11. If K has a terminal object 𝑥 , then any functor 𝐹 : K → C has a
colimit, given by the object 𝐹 (𝑥) ∈ C. □

Observation 6.5.12. Suppose the∞-category K has a terminal object 𝑥 . Since
{𝑥} → K is cofinal, we have an equivalence

∗ ≃ colim{𝑥 } ∗
∼−→ colimK ∗ ≃ ∥K∥ .

Using Lemma 5.7.1, this implies that ∥K∥ is also contractible when K has an
initial object.

Putting this together, we have almost proved the following:

Theorem 6.5.13. The following are equivalent for a functor 𝑝 : E→ B:

(1) 𝑝 is cofinal, i.e. E𝑏/ is weakly contractible for all 𝑏 ∈ B.

(2) 𝐿𝑟
B
(𝑝) is an equivalence.

(3) 𝑝 is left orthogonal to all right fibrations.

(4) For any functor 𝜙 : B→ C, the induced functor

C𝜙/ → C𝜙𝑝/

is an equivalence.
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(5) A functor 𝜙 : B → C has a colimit if and only if 𝜙𝑝 has a colimit, in which case
the induced map of colimits is an equivalence.

(6) For every functor 𝜙 : B→ Gpd∞, the canonical map

colimE 𝜙𝑝 → colimB 𝜙

is an equivalence.

Proof. We have already seen that the first three items are equivalent and imply
the next two. The sixth item is a special case of the fifth, so we only need to
show that it implies that 𝑝 is cofinal. This is true since we can identify ∥E𝑏/∥ ≃
colimEB(𝑏, 𝑝 (–)), and colimBB(𝑏, –) ≃ ∥B𝑏/∥ ≃ ∗ by Observation 6.5.12, since
B𝑏/ has an initial object. □

Proposition 6.5.14. Any left adjoint is coinitial, and any right adjoint is cofinal.

Proof. We prove the first case. By Corollary 6.3.7, if 𝐹 : C → D is a left adjoint
then C/𝑑 has a terminal object for all 𝑑 ∈ D and so is weakly contractible by
Observation 6.5.12. □

Observation 6.5.15. We have characterized the cofinal functors as those that
are left orthogonal to right fibrations. This implies that cofinal functors are
closed under several constructions:

▶ If 𝐹 is cofinal then a composite 𝐺𝐹 is cofinal if and only if 𝐺 is cofinal
(Lemma 2.4.5).

▶ Pushouts of cofinal functors are cofinal (Lemma 2.4.6)

▶ Cofinal functors are closed under cobase change (Lemma 2.4.7).

▶ Cofinal functors are closed under retracts (Lemma 2.4.9).

▶ Cofinal functors are closed under products. (It suffices to show that if 𝐹 is
cofinal then so is 𝐹 ×K for a fixed∞-category K, which follows from right
fibrations being closed under exponentiation, Corollary 3.2.5.)

Proposition 6.5.16 (“Quillen’s Theorem A”). Suppose 𝐹 : C→ D is cofinal. Then
∥𝐹 ∥ : ∥C∥ → ∥D∥ is an equivalence of ∞-groupoids.

Proof. Here ∥𝐹 ∥ is the map on colimits induced by 𝐹 for the constant functor to
Gpd∞ with value ∗. □

Exercise 6.5. Assuming the functor K → K⊳ is fully faithful (cf. Corollary 8.8.3),
show that it is cofinal if and only if K is weakly contractible. Conclude that weakly
contractible colimits in C𝑥/ are computed in C.

Exercise 6.6. Show by hand that Λ2
0 → (Λ

2
0)

⊳ is cofinal, where Λ2
0 ≃ {0 < 1}⨿{0} {0 <

2} ≃ {1, 2}⊳. Conclude that pushouts in C𝑥/ are given by pushouts in C.
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Proposition 6.5.4 says that a functor 𝑝 : E→ B is cofinal if and only if it is a
contravariant equivalence when viewed as a morphism 𝑝 → idB in Cat∞/B. We
thus have the following as a special case of Proposition 6.4.5:

Corollary 6.5.17. Cofinal functors are closed under base change along left fibrations.
Dually, coinitial functors are closed under base change along right fibrations. □

Remark 6.5.18. More generally, cofinal functors are closed under base change
along cocartesian fibrations, but this is a more involved result to prove.
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Chapter 7

Weighted colimits

7.1 Representable criterion for (co)limits

Above we defined the limit of a functor 𝐹 : I → C as a terminal cone on 𝐹 , i.e.
as a terminal object in C/𝐹 . We now want to prove that we can also recognize
limits on mapping ∞-groupoids, namely by a natural equivalence

C(𝑥, limI 𝐹 ) ≃ limI C(𝑥, 𝐹 ) .

This amounts to showing that the right fibration C/𝐹 → C is also the fibration
for the functor on the right. The left fibration for the functor C(𝑥, 𝐹 (–)) is
𝐹 ∗C𝑥/ → I, so using our description of limits in Gpd∞ we can identify the
right-hand side as

Map/I(I, 𝐹 ∗C𝑥/) ≃ Map/C(I,C𝑥/).

Our goal is therefore to identify the fibration for a functor of this form. We
will build this up in several stages, where we relate constructions on functors to
constructions on fibrations.

Observation 7.1.1. For an ∞-category K we have a functor – × K : Cat∞ →
Cat∞ (for example given by restricting the limit functor from Exercise 6.4). For
any ∞-category C, the presheaf Map(– ×K,C) is represented by Fun(K,C), so
the functor – ×K has a right adjoint, given by Fun(K, –). Using Lemma 6.3.8
we then get for any ∞-category C an adjunction

(– ×K)∗ : Fun(C, Cat∞) ⇄ Fun(C, Cat∞) : Fun(K, –) .

Lemma 7.1.2. For 𝐹 : C → Cat∞, the functor 𝐹 ×K := (– ×K) ◦ 𝐹 is the product
of 𝐹 and constK in Fun(C, Cat∞).

Proof. We have natural maps

const∗ ×K← 𝐹 ×K→ 𝐹 × ∗.
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Here
𝐹 × ∗ = (– × ∗)∗ ◦ 𝐹 ≃ 𝐹

as – × ∗ ≃ idCat∞ , while

const∗ ×K ≃ (– ×K) ◦ const∗ ≃ constK.

This diagram exhibits 𝐹 ×K as a product by Corollary 5.5.10. □

Proposition 7.1.3. Suppose we have morphisms of cocartesian fibrations

F G F′

B

𝑝
𝑞

𝑝′

that straighten to natural transformations

𝐹 → 𝐺 ← 𝐹 ′

of functors B → Cat∞. Then the pullback 𝐹 ×𝐺 𝐹 ′ in functors corresponds to the
fibration

𝜋 := 𝑝 ×𝑞 𝑝′ : F ×G F′ → B.

Proof. Since straightening is an equivalence of∞-categories, it suffices to prove
that 𝜋 is a pullback in the ∞-category Cocart(B) of cocartesian fibrations. This
is a (non-full) subcategory of Cat∞/B, so we first use Corollary 5.6.3 and Ex-
ercise 6.6 to conclude that 𝜋 is a pullback in Cat∞/B. Then we want to apply
Proposition 5.4.1 to conclude that 𝜋 is also a pullback in Cocart(B). For this we
need to check that for a triangle

E F ×G F′

B,

𝜙

𝑟 𝜋

the functor 𝜙 preserves cocartesian morphisms if and only if its composites with
the projections to F,G and F′ all do so. But this follows from the description
of 𝜋-cocartesian morphisms in Exercise 3.7 as those that map to 𝑝- and 𝑝′-
cocartesian morphisms in F and F′, respectively. □

Proposition 7.1.4. If 𝑝 : F→ B is the cocartesian fibration for a functor 𝐹 , then the
cocartesian fibration for Fun(K, 𝐹 ) is Fun(B) (K,F) → B.

Proof. In Fun(B, Cat∞), the object Fun(K, 𝐹 ) represents the presheaf Map(– ×
K, 𝐹 ) by Observation 7.1.1, so we can identify the corresponding fibration by
understanding this presheaf fibrationally. Here the functor 𝐺 × K is naturally
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equivalent to the product𝐺 ×constK. We know that B×K→ B is the fibration
for constK (since pullback corresponds to composition), so by Proposition 7.1.3
we know that if E → B is the fibration for 𝐺 , then that for 𝐺 × K is E × K ≃
E ×B (B ×K) → B. Now we observe that we have a natural equivalence

Fun/B(E ×K,F) ≃ Fun(K, Fun/B(E,F)) ≃ Fun/B(E, Fun(B) (K,F))

by a variant of Exercise 5.6; we need to show that this restricts to the full sub-
categories of functors that preserve cocartesian morphisms. On the one hand,
a cocartesian morphism in E×K is one that projects to a cocartesian morphism
in E and an equivalence in K, so that a functor E × K → F over B preserves
cocartesian morphisms if and only if its restriction to E × {𝑘} → F does so for
every 𝑘 ∈ K. On the other hand, a cocartesian morphism in Fun(B) (K,F) is
also one whose component at each 𝑘 ∈ K is cocartesian in F by Corollary 3.6.5
and Proposition 3.5.15; the equivalence above therefore restricts to

Funcoct
/B (E ×K,F) ≃ Fun(K, Fun

coct
/B (E,F)) ≃ Fun

coct
/B (E, Fun(B) (K,F)) .

Thus Fun(B) (K,F) represents the presheaf Mapcoct
/B (– × K,F) on Cocart(B). If

F straightens to 𝐹 , it follows that Fun(B) (K,F) is the cocartesian fibration for
Fun(K, 𝐹 ). □

Corollary 7.1.5. Suppose 𝑝 : F→ B is the cocartesian fibration for a functor 𝐹 . Given
a natural transformation 𝛼 : 𝐹 → constC and a functor 𝜙 : K → C, the cocartesian
fibration for the functor Fun/C(K, 𝐹 (–)) is the pullback of

Fun(B) (K,E) → Fun(B) (K,B × C) ← B

where the first map comes from composition with the functor E → B × C over B that
corresponds to the natural transformation 𝛼 , and the second is adjoint to idB × 𝜙 .

Proof. As in the proof of Lemma 7.1.2 we know that since limits in Fun(B, Cat∞)
are computed pointwise (Corollary 5.5.10), the functor Fun/C(K, 𝐹 (–)) is the
pullback

Fun/C(K, 𝐹 (–)) Fun(K, 𝐹 (–))

const∗ Fun(K, constC)

in Fun(B, Cat∞). This corresponds to a pullback in Cocart(B), which by Propo-
sition 7.1.3 is computed by a pullback in Cat∞. Now Proposition 7.1.4 shows
that the fibrations for the functors in this square are as claimed. □
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Observation 7.1.6. Suppose Q→ B is the cocartesian fibration for the functor
Fun/C(K, 𝐹 (–)) as above. Then we have a commutative diagram

Q Fun(B) (K,E) Fun(K,E)

B Fun(B) (K,B × C) Fun(K,B × C)

B Fun(K,B)

⌟ ⌟

⌟

where all three squares are pullbacks. It follows that Q fits in a pullback square

Q Fun(K,E)

B Fun(K,B) × Fun(K,C)const×{𝜙 }

Corollary 7.1.7. Given a functor 𝐹 : I→ C, we have:

(1) The left fibration for the functor Map/C(I,C/–) is C𝐹/ → C.

(2) The right fibration for the functor Map/C(I,C–/) is C/𝐹 → C.

Proof. We prove the first statement; the second follows similarly from the du-
als of the results in this section. The cocartesian fibration for 𝑥 ↦→ C/𝑥 is
ev1 : Ar(C) → I, so we get from Observation 7.1.6 that the cocartesian fibra-
tion for1 Fun/C(I,C/𝑥 ) is the pullback

Q Fun(I, Ar(C))

C Fun(I,C) × Fun(I,C) .{𝐹 }×const

which is also the definition of C𝐹/. □

Interpreting this in terms of functors, we get:

Corollary 7.1.8. Given a functor 𝐹 : I→ C, we have natural equivalences

▶ NatI,C(𝐹, const–) ≃ NatIop,Gpd∞ (const∗,C(𝐹, –)) ≃ limIop C(𝐹, –),

▶ NatI,C(const–, 𝐹 ) ≃ NatI,Gpd∞ (const∗,C(–, 𝐹 )) ≃ limI C(–, 𝐹 ). □
1Here Fun/C (I,C/–) is an ∞-groupoid since C/𝑥 → C is a right fibration and so conservative

— the components of a natural transformation over C by definition lie over equivalences in C.
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Corollary 7.1.9. Given a diagram 𝐹 : I→ C, an object of C is the limit of 𝐹 if and
only if it represents the presheaf

NatI,Gpd∞ (const∗,C(–, 𝐹 )) ≃ limI C(–, 𝐹 ),

while it is the colimit of 𝐹 if and only if it corepresents the copresheaf

NatIop,Gpd∞ (const∗,C(𝐹, –)) ≃ limIop C(𝐹, –).

Exercise 7.1. Use Corollary 7.1.9 to prove that a left adjoint preserves all colimits and
a right adjoint preserves all limits.

7.2 Weighted limits and colimits

We now introduce the notion of weighted (co)limits. As we will see, these can
actually be subsumed within the ordinary notions of (co)limits, but will still be
useful to formulate and prove a number of results later on.

Definition 7.2.1. The limit of 𝐹 : I→ C weighted by𝑊 : I→ Gpd∞ is an object
of C that represents the presheaf

𝑥 ↦→ NatI,Gpd∞ (𝑊,C(𝑥, 𝐹 )) .

Dually, the colimit of 𝐹 weighted by𝑈 : Iop → Gpd∞ is an object of C that corep-
resents the copresheaf

𝑥 ↦→ NatIop,Gpd∞ (𝑈 ,C(𝐹, 𝑥)).

Observation 7.2.2. From Corollary 7.1.9 we see that the ordinary (co)limit of
a functor 𝐹 is also the𝑊 -weighted (co)limit for𝑊 = const∗.

Proposition 7.2.3. If 𝑝 : W → I is the left fibration for 𝑊 , then lim𝑊
I 𝐹 is also

limW 𝐹 ◦𝑝 . If 𝑞 : U→ C is the right fibration for𝑈 , then colim𝑈
I 𝐹 is also colimU 𝐹 ◦𝑞.

Proof. We prove the limit version. Since the left fibration for C(𝑥, 𝐹 ) is 𝐹 ∗C𝑥/,
we can rewrite the presheaf represented by lim𝑊

I as

𝑥 ↦→ Map/I(W, 𝐹 ∗C𝑥/) ≃ Map/C(W,C𝑥/) .

By Corollary 7.1.7 this corresponds to the right fibration C/𝐹𝑝 → C, which is
also represented by limW 𝐹𝑝. □

Combining this with Proposition 5.2.3 and Proposition 5.3.4, we deduce the
following concrete descriptions of weighted (co)limits in Gpd∞ and Cat∞:

Corollary 7.2.4. Given𝑊 : I→ Gpd∞ with left fibration 𝑝 : W→ I and𝑈 : Iop →
Gpd∞ with right fibration 𝑞 : U→ C, we have:
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▶ For 𝜙 : I→ Gpd∞ with corresponding left fibration 𝜋 : E→ I,

lim𝑊
I 𝜙 ≃ Map/I(W,E) ≃ NatI,Gpd∞ (𝑊,𝜙),

colim𝑈
I 𝜙 ≃ ∥U ×I E∥ .

▶ For 𝜙 : I→ Cat∞ with corresponding cocartesian fibration 𝜋 : E→ I,

lim𝑊
I 𝜙 ≃ Funcoct

/I (W,E),

colim𝑈
I 𝜙 ≃ (U ×I E) [𝑆−1],

where 𝑆 consists of all morphisms that map to 𝜋-cocartesian morphisms in E.

Example 7.2.5. For a representable weight C(–, 𝑐), we get

colimC(–,𝑐 )
C

𝐹 ≃ colimC/𝑐 𝐹 ≃ 𝐹 (𝑐),

since C/𝑐 has a terminal object (Proposition 6.5.10). Similarly,

limC(𝑐,–)
C

𝐹 ≃ 𝐹 (𝑐) .

7.3 The Yoneda lemma

We will now show a more natural version of the Yoneda lemma, namely that
there is an equivalence

MapPSh(C) (y,Φ) ≃ Φ

that is natural in Φ ∈ PSh(C). The starting point for this is some observations
about weighted colimits.

Observation 7.3.1. By Corollary 7.2.4, for 𝜙 : C → Cat∞ with cocartesian fi-
bration 𝜋 : E → C and 𝑊 : Cop → Gpd∞ with corresponding right fibration
W→ C, there is a natural equivalence

MapPSh(C) (𝑊,MapCat∞ (𝜙,D)) ≃ MapCat∞ (colim𝑊
C 𝜙,D)

≃ Map((W ×C E) [𝑆−1],D),

where 𝑆 comprises the morphisms that project to 𝜋-cocartesian ones in E.

Observation 7.3.2. Specializing the previous observation, given a bifibration
𝑝 : E → A × B corresponding to 𝛾 : B → RFib(A) and Γ : Aop × B → Gpd∞,
we have for 𝑊 ∈ PSh(B), 𝐹 ∈ PSh(A) with corresponding right fibrations
W→ B,F→ A, natural equivalences

MapPSh(B) (𝑊,MapPSh(A) (Γ, 𝐹 ))) ≃ MapPSh(B) (𝑊,Map/A(𝛾 (–),F)))
≃ Map/A((W ×B E) [𝑆−1],F),
≃ Map/A(W ×B E,F) .
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Here the last equivalence uses that 𝑆 consists precisely of the morphisms that
project to 𝑝B-cocartesian morphisms, but these are equivalently those that project
to equivalences in A; since F → A is a right fibration and so in particular con-
servative, any functor over A takes these to equivalences.

Proposition 7.3.3. For𝑊, 𝐹 ∈ PSh(C), there is a natural equivalence

MapPSh(C) (𝑊,MapPSh(C) (y, 𝐹 )) ≃ MapPSh(C) (𝑊, 𝐹 ) .

Proof. Suppose𝑊, 𝐹 correspond to the right fibrations W,F → C. Specializing
Observation 7.3.2 to the bifibration Ar(C) → C×C, we get a natural equivalence

MapPSh(C) (𝑊,MapPSh(C) (y, 𝐹 )) ≃ Map/C(W ×C Ar(C),F)

where the pullback W×CAr(C) is over ev1 and the map to C is given by ev0. But
this is precisely the free cartesian fibration on W, and since F is a right fibration
we get from Theorem 6.1.4 a natural equivalence

Map/C(W ×C Ar(C),F) ≃ Map/C(W,F) .

Combined with straightening, this completes the proof. □

Since the Yoneda embedding is fully faithful also for the locally small ∞-
category PSh(C), we get:

Corollary 7.3.4 (The Yoneda Lemma). There is a natural equivalence

MapPSh(C) (y, –) ≃ id

of functors PSh(C) → PSh(C). □

The equivalence in Proposition 7.3.3 also has the following interpretation
(sometimes known as the co-Yoneda lemma):

Corollary 7.3.5. There is a natural equivalence

colim𝑊
C y ≃𝑊

for𝑊 ∈ PSh(C). □

Observation 7.3.6. If 𝑝 : E → C is the right fibration for 𝑊 , then Corol-
lary 7.3.5 is equivalent via Proposition 7.2.3 to:𝑊 is the colimit of the composite

E
𝑝
−→ C

𝑌𝑜−−→ PSh(C) .
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7.4 More about (co)limits

In this section we will prove some further useful results about (co)limits.

Observation 7.4.1. For any ∞-category K, Exercise 7.1 implies that the left
adjoint K × – preserves colimits, while the right adjoint Fun(K, –) preserves
limits.

Lemma 7.4.2. Suppose the ∞-category C is the limit of a functor 𝐹 : K → Cat∞.
Then for all 𝑥,𝑦 ∈ C we have

C(𝑥,𝑦) ≃ limKMap𝐹 (𝑘 ) (𝑥𝑘 , 𝑦𝑘 ),

where 𝑥𝑘 , 𝑦𝑘 are the images of 𝑥,𝑦 in 𝐹 (𝑘) under the functor from C in the limit cone.

Proof. Since Ar(C) ≃ lim𝑘∈K Ar(𝐹 (𝑘)) by Observation 7.4.1, we have a pullback
square

C(𝑥,𝑦) lim𝑘∈K Ar(𝐹 (𝑘))

{(𝑥,𝑦)} lim𝑘∈K 𝐹 (𝑘)×2.

Since limits commute by Corollary 5.5.11, this implies that C(𝑥,𝑦) is also a limit
over K, as required. □

Proposition 7.4.3. For any ∞-category K, the functor

Fun(–,K) : Catop
∞ → Cat∞

preserves limits.

Proof. For L ∈ Cat∞ and a functor 𝐹 : I→ Cat∞ we have natural equivalences

Map(L, Fun(colimI 𝐹,K)) ≃ Map(L × colimI 𝐹,K)
≃ Map(colimI(L × 𝐹 ),K)
≃ limIop Map(L × 𝐹,K)
≃ limIop Map(L, Fun(𝐹,K))
≃ Map(L, limIop Fun(𝐹,K)) .

This implies
Fun(colimI 𝐹,K) ≃ limIop Fun(𝐹,K),

as required. □

Corollary 7.4.4. Given a functor 𝜙 : K→ C, where K := colimI 𝐹 for some functor
𝐹 : I→ Cat∞ with I weakly contractible, we have

C𝜙/ ≃ limIop C𝜙𝑖/, C/𝜙 ≃ limIop C/𝜙𝑖

where 𝜙𝑖 : 𝐹 (𝑖) → C is obtained by restricting 𝜙 along the colimit cocone.
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Proof. We prove the first case. By Observation 5.1.6 we have a pullback square

C𝜙/ Fun(K⊲,C)

{𝜙} Fun(K,C) .

Here (–)⊲ := (–) × [1] ⨿(–)×{1} [0] preserves weakly contractible colimits, since
colimits commute (Corollary 5.5.11), so that Fun((–)⊲,C) preserves weakly con-
tractible limits. Since limits commute, this implies the result. □

Corollary 7.4.5. Given a functor 𝜙 : K→ C, where K := colimI 𝐹 for some functor
𝐹 : I→ Cat∞, we have a decomposition

colimK 𝜙 ≃ colimI colim𝐹 (𝑖 ) 𝜙𝑖 ,

where 𝜙𝑖 : 𝐹 (𝑖) → C is obtained by restricting 𝜙 along the colimit cocone, provided these
colimits exist.

Proof. For 𝑐 ∈ C we have natural equivalences

C(colimK 𝜙, 𝑐) ≃ MapFun(K,C) (𝜙, const𝑐)
≃ limIMapFun(𝐹 (𝑖 ),C) (𝜙𝑖 , const𝑐)
≃ limI C(colim𝐹 (𝑖 ) 𝜙𝑖 , 𝑐)
≃ C(colimI colim𝐹 (𝑖 ) 𝜙𝑖 , 𝑐) .

where the second uses Proposition 7.4.3 and Lemma 7.4.2. □

Exercise 7.2 (An alternative proof of Corollary 7.4.5). Show that for a functor 𝐹 : K→
C, the∞-groupoidMap/C (K,C/𝑐 ) is naturally equivalent toMapFun(K,C) (𝐹, const𝑐 ). Con-
clude that if Cat′∞/C denotes the full subcategory of Cat∞/C on those functors whose
colimits exist in C, then the functor

C
C/–−−→ RFib(C) ↩→ Cat′∞/C

has a left adjoint. Now deduce Corollary 7.4.5 from the fact that left adjoints preserve
colimits (Exercise 7.1) together with and the description of colimits in Cat′∞/C from
Corollary 5.6.11 and Corollary 5.4.6.

7.5 (★) Ends and natural transformations

We can describe mapping∞-groupoids in functor∞-categories as certain weighted
limits.
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Definition 7.5.1. Given a functor Φ : C × Cop → D, the coend of Φ, if it exists,
is the weighted colimit ∫

C

Φ := colimC(–,–)
Φ.

Dually, the end of a functor Ψ : Cop × C→ D, if it exists, is the weighted limit∫ ∗

C

Ψ := limC(–,–)
Ψ.

Warning 7.5.2. We use Yoneda’s original notation for coends rather than the
Australian (or upside-down) convention, where the end is denoted as

∫
C
Φ and

the coend as
∫ C

Φ. After all, it is the coend of a functor that is (very) loosely
similar to an integral, not the end.

Notation 7.5.3. The mapping ∞-groupoid functor C(–, –) : Cop × C → Gpd∞
has a corresponding right fibration

Tw𝑟 (C) → C × Cop,

which can be obtained from Ar(C) → C × C by first taking the cocartesian
straigthening in the second variable and then taking the cartesian unstraight-
ening of the corresponding functor. The corresponding left fibration is then

Twℓ (C) := Tw𝑟 (C)op → Cop × C.

(Here Twℓ (C) and Tw𝑟 (C) are the twisted arrow ∞-categories of C, which can be
described explicitly as certain simplicial∞-groupoids; to see that these describe
the mapping∞-groupoid functor as we have constructed it requires relating the
cartesian and cocartesian fibrations of a single functor via a span construction.)

Notation 7.5.4. For functors 𝐹,𝐺 : C→ D, we write

NatC,D(𝐹,𝐺) := MapFun(C,D) (𝐹,𝐺)

for the ∞-groupoid of natural transformations from 𝐹 to 𝐺 .

We can explicitly identify ends in Gpd∞ in terms of bifibrations:

Proposition 7.5.5. For a functor Φ : Cop×C→ Gpd∞ with corresponding bifibration2

𝑝 : E→ C × C, we have an equivalence∫ ★

C

Φ ≃ Map/C×C(C,E) .
2Obtained, by our convention, by first unstraightening Φ to a functor C→ RFib(C) and then

taking the cocartesian unstraightening of this.
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Proof. By Corollary 6.2.2, we have a natural equivalence

Map/C×C(C,E) ≃ Map/C×C(Ar(C),E) .

This also gives an equivalence on ∞-groupoids of maps between the corre-
sponding left fibrations, which gives the end of Φ by Corollary 7.2.4. □

Corollary 7.5.6. For functors 𝐹,𝐺 : C→ D, we have

NatC,D(𝐹,𝐺) ≃
∫ ∗

C

D(𝐹,𝐺).

Proof. Since Ar(Fun(C,D)) ≃ Fun(C, Ar(D)), we can can describe Nat(𝐹,𝐺) as
the fibre at (𝐹,𝐺) of the bifibration

Fun(C, Ar(D)) → Fun(C,D ×D) .

Thus we have

Nat(𝐹,𝐺) ≃


C Ar(D)

C × C D ×D

Δ

𝐹×𝐺


≃ Map/C×C(C, (𝐹 ×𝐺)∗Ar(D)) .

Here (𝐹 ×𝐺)∗Ar(D) → C × C is the bifibration for D(𝐹 (–),𝐺 (–)), so Proposi-
tion 7.5.5 identifies this with the end of this functor. □

7.6 (★) Relative (co)limits

In this section we prove some useful results about (co)limits in (co)cartesian
fibrations. It will be convenient to express these in terms of the notion of relative
(co)limits:

Definition 7.6.1. Given a functor 𝑝 : E→ B, we say that a cocone 𝜙 : I⊲ → E

is a 𝑝-colimit if the commutative square

E(𝜙 (∞), 𝑒) limIop E(𝜙, 𝑒)

B(𝑝𝜙 (∞), 𝑝𝑒) limIop B(𝑝𝜙, 𝑝𝑒)

is a pullback for all 𝑒 ∈ E. Dually, we say that a cone 𝜓 : I⊳ → E is a 𝑝-limit if

E(𝑒, 𝜙 (−∞)) limI E(𝑒, 𝜙)

B(𝑝𝑒, 𝑝𝜙 (−∞)) limIB(𝑝𝑒, 𝑝𝜙)
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Exercise 7.3. Suppose 𝜙 : I⊲ → E is a cocone, and set 𝜙 := 𝜙 |I. Show that 𝜙 is a
𝑝-colimit for 𝑝 : E→ B if and only if the commutative square

E𝜙/ B𝑝𝜙/

E𝜙/ B𝑝𝜙/

is a pullback. (Use 5.6.7 and 6.5.10.)

Observation 7.6.2. If 𝜙 is a cocone such that 𝑝𝜙 is a colimit in B, then 𝜙 is a
𝑝-colimit if and only if it is a colimit in E.

Proposition 7.6.3. Suppose 𝑝 : E → B is a cocartesian fibration. If the fibres of 𝑝
all admit K-indexed colimits and the cocartesian transport functors preserve these, then
a cocone 𝜙 : I⊲ → E is a 𝑝-colimit if and only if its cocartesian transport to a cocone in
E𝑝 (𝜙 (∞) ) is a colimit there.

Proof. Let 𝑎 := 𝜙 (∞) and take 𝜓 : K⊲ → E𝑎 to be the cocone obtained by co-
cartesian transport along 𝜙3 Then for 𝑒 ∈ E over 𝑏 ∈ B the fibre at 𝑓 : 𝑎 → 𝑏 in
the square

E(𝜙 (∞), 𝑒) limKop E(𝜙, 𝑒)

B(𝑎, 𝑏) limKop B(𝑝𝜙,𝑏)

can be identified as

E𝑏 (𝑓!𝜙 (∞), 𝑒) → limK E𝑏 (𝑓!𝜓, 𝑒),

so that 𝜙 is a 𝑝-colimit if and only if this is an equivalence for all 𝑒 and 𝑓 . Taking
𝑓 = id𝑎 we see that 𝜓 must be a colimit in E𝑎, and if 𝑓! preserves K-shaped
colimits this special case implies the statement for general 𝑓 , as required. □

From this we obtain the standard description of colimits in the source of a
cocartesian fibration:

Corollary 7.6.4. Suppose 𝑝 : E→ B is a cocartesian fibration. If the base B and the
fibres of 𝑝 all admit K-indexed colimits and the cocartesian transport functors preserve
these, then E admits K-indexed colimits and 𝑝 preserves these. For a diagram 𝜙 : E, the
colimit is computed by taking the cocartesian transport of 𝜙 to a diagram in the fibre
over the colimit of 𝑝 ◦ 𝜙 and computing the colimit in this fibre. □

We can also prove a rather more restrictive description of relative colimits
in cartesian fibrations:

3This can be constructed as a cocartesian morphism in Fun(K,E) → Fun(K,B).
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Proposition 7.6.5. Suppose 𝑝 : E→ B is a cartesian fibration and 𝜙 : I⊲ → B is a
cocone such that the functor Bop → Cat∞ associated to 𝑝 takes 𝜙op to a limit cone in
Cat∞. Then every 𝑝-cartesian lift of 𝜙 := 𝜙 |I admits a 𝑝-colimit, which is a 𝑝-cartesian
lift of 𝜙 .

Proof. Let 𝑏 := 𝜙 (∞). Then E𝑏 ≃ lim𝑥∈I E𝑝𝜙 (𝑥 ) , and more precisely E𝑏 is identi-
fied with the∞-category of cartesian sections of𝜙∗E→ I. A 𝑝-cartesian lift𝜓 of
𝜙 therefore determines an object 𝑒 ∈ E𝑏 with 𝑝-cartesian morphisms𝜓 (𝑥)

𝑞𝑥−−→ 𝑒

extending𝜓 to a 𝑝-cartesian lift𝜓 of 𝜙 . We claim that𝜓 is a 𝑝-colimit. In other
words, the commutative square

E(𝑒, 𝑒′) limE(𝜓, 𝑒′)

B(𝑏, 𝑏′) limB(𝜙,𝑏′)

is a pullback for all 𝑒′ ∈ E, with 𝑏′ := 𝑝 (𝑒′). To see this we look on fibres over
𝑓 : 𝑏 → 𝑏′, where we get

E𝑏 (𝑒, 𝑓 ∗𝑒′) → lim𝑥∈I E𝜙 (𝑥 ) (𝜓 (𝑥), 𝑞∗𝑥 𝑓 ∗𝑒′) ≃ lim𝑥∈I E𝜙 (𝑥 ) (𝑞∗𝑥𝑒, 𝑞∗𝑥 𝑓 ∗𝑒′),

which is an equivalence since E𝑏 is the limit lim𝑥∈I E𝜙 (𝑥 ) . □

Corollary 7.6.6. Suppose 𝑝 : E → B is a cartesian fibration and 𝜙 : I⊲ → B is a
colimit cocone such that the functor Bop → Cat∞ associated to 𝑝 takes 𝜙op to a limit
cone in Cat∞. Then every 𝑝-cartesian lift of 𝜙 := 𝜙 |I admits a colimit in E, which is a
𝑝-cartesian lift of 𝜙 .

Corollary 7.6.7. Suppose 𝑝 : E→ B is a right fibration and 𝜙 : I⊲ → B is a colimit
cocone such that the functor Bop → Gpd∞ associated to 𝑝 takes 𝜙op to a limit cone in
Gpd∞. Then every lift of 𝜙 := 𝜙 |I admits a colimit in E, which is a lift of 𝜙 .

Corollary 7.6.8. Suppose 𝑝 : E → B is a right fibration such that B admits I-
indexed colimits and the associated functor Bop → Gpd∞ preserves I-indexed limits.
Then E admits I-indexed colimits and 𝑝 preserves these.

7.7 (★) Pullbacks of localizations

We saw in Corollary 5.7.3 that localization from ∞-categories to ∞-groupoids
preserves products. However, it does not in general preserve pullbacks. In
this section we will look at some special circumstances where pullbacks are in
fact preserved, which we will deduce from the observation that colimits of ∞-
groupoids are universal, in the following sense:

Proposition 7.7.1. For any map 𝑓 : 𝑋 → 𝑌 of ∞-groupoids, the pullback functor
𝑓 ∗ : Gpd∞/𝑌 → Gpd∞/𝑋 preserves colimits.
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Proof. Under straightening, this corresponds to the functor

𝑓 ∗ : Fun(𝑌,Gpd∞) → Fun(𝑋,Gpd∞)

given by composition with 𝑓 . This preserves colimits since these are computed
pointwise by (the dual of ) Corollary 5.5.10. □

Observation 7.7.2. Given a functor 𝐹 : B → Gpd∞, a natural transformation
𝛼 : 𝐹 → const𝑋 and a map 𝑓 : 𝑌 → 𝑋 , Proposition 7.7.1 says that there is a
pullback square of ∞-groupoids

colimB 𝑌 ×𝑋 𝐹 colimB 𝐹

𝑌 𝑋 .
𝑓

We can interpret this via the description of colimits in Gpd∞ as localizations of
left fibrations (Proposition 5.2.3). If 𝑝 : E → B is the left fibration for 𝐹 , then
𝑌 ×𝑋 E is the fibration for 𝑌 ×𝑋 𝐹 by Proposition 7.1.3, so that we have a pullback
square

∥𝑌 ×𝑋 E∥ ∥E∥

𝑌 𝑋 .
𝑓

Here we can take the left fibration 𝑝 to be idE, giving:

Corollary 7.7.3. Suppose E is an ∞-category, and we’re given a functor 𝑝 : E→ 𝑋

with 𝑋 an ∞-groupoid. Then a pullback square

E′ E

𝑋 ′ 𝑋

𝑝′ 𝑝

induces a pullback square of ∞-groupoids

∥E′∥ ∥E∥

𝑋 ′ 𝑋 .

∥𝑝′ ∥ ∥𝑝 ∥

In particular, the fibre of ∥E∥ → 𝑋 at 𝑥 ∈ 𝑋 is ∥E ×𝑋 {𝑥}∥, so that ∥𝑝 ∥ is an
equivalence if and only if E ×𝑋 {𝑥} is weakly contractible for all 𝑥 ∈ 𝑋 . □

We also get a useful criterion for detecting colimits:
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Corollary 7.7.4. For a functor 𝐹 : K→ Gpd∞ and a natural transformation 𝛼 : 𝐹 →
const𝑋 , the following are equivalent:

(1) 𝛼 is a colimit cocone, i.e. corresponds to an equivalence colim 𝐹
∼−→ 𝑋 .

(2) For any 𝑥 ∈ 𝑋 , if 𝐹𝑥 := 𝐹 ×𝑋 {𝑥}, then colim 𝐹𝑥 ≃ ∗.

(3) If E → K is the left fibration for 𝐹 , then the ∞-category E ×𝑋 {𝑥} is weakly
contractible for all 𝑥 ∈ 𝑋 . □

To exploit Corollary 7.7.3 further, we now introduce the notion of a Kan
fibration of ∞-categories. This is based on ideas of Sattler and Wärn [SW25].

Definition 7.7.5. A functor 𝑝 : E→ B is a Kan fibration if it is both a left and a
right fibration.

Proposition 7.7.6. The following are equivalent for 𝑝 : E→ B:

(1) 𝑝 is a Kan fibration

(2) The straightening of 𝑝 (as either a left or right fibration) takes every morphism in
B to an equivalence of ∞-groupoids.

(3) There is a pullback square
E 𝑌

B 𝑋

𝑝

where 𝑋 and 𝑌 are ∞-groupoids.

(4) The commutative square
E ∥E∥

B ∥B∥

𝑝 ∥𝑝 ∥

is a pullback.

Proof. If 𝑝 is a Kan fibration, then it is in particular both a cocartesian and a
cartesian fibration, so its covariant straightening

𝐹 : B→ Gpd∞

takes every morphism in B to a left adjoint by Corollary 6.3.7. But a left adjoint
among∞-groupoids is an equivalence (as all natural transformations among∞-
groupoids are equivalences). Thus 𝐹 factors as

B→ ∥B∥ 𝐹 ′−→ Gpd∞,
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which means that we have a pullback square

E 𝑌

B ∥B∥

𝑝 𝑞

where 𝑞 is the straightening of 𝐹 ′ (so that 𝑌 is an ∞-groupoid). Conversely,
any morphism of ∞-groupoids is a Kan fibration, so the first three conditions
are equivalent.

Suppose that the third condition holds; then we have a commutative dia-
gram

E ∥E∥ 𝑌

B ∥B∥ 𝑋,

𝑝 ∥𝑝 ∥

where the outer square is a pullback by assumption. This implies that the right-
hand square is a pullback by Corollary 7.7.3, hence so is the left-hand square. □

Corollary 7.7.7. Suppose we have a commutative square

E′ E

B′ B

𝑝′ 𝑝

where 𝑝 and 𝑝′ are Kan fibrations. Then this square is a pullback if and only if the
induced commutative square of ∞-groupoids

∥E′∥ ∥E∥

∥B′∥ ∥B∥

is a pullback.

Proof. Consider the commutative cube

E′ E

∥E′∥ ∥E∥

B′ B

∥B′∥ ∥B∥ .
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Here the left and right faces are pullbacks, so the back face is a pullback if the
front face is a pullback. Conversely, if the back face is a pullback then so is the
composite square

E′ ∥E∥

B′ ∥B∥,

so that the front face is a pullback by Corollary 7.7.3. □

Lemma 7.7.8. Suppose 𝑝 : E→ B is a cocartesian fibration, and 𝑝ℓ : Eℓ → B is the
induced left fibration as in Observation 6.4.1. Then ∥E∥ → ∥Eℓ ∥ is an equivalence.

Proof. The localization functor Cocart(B) → Gpd∞ is left adjoint to the functor
(–) × B : Gpd∞ → Cocart(B), which factors through the inclusion LFib(B) ↩→
Cocart(B). The left adjoint therefore factors through (–)ℓ , as required. □

Observation 7.7.9. Given a pullback square

F E

C B

𝑞 𝑝

where 𝑝 is a cocartesian fibration, the induced square

Fℓ Eℓ

C B

𝑞ℓ 𝑝ℓ

is also a pullback. Indeed, since 𝑝ℓ and 𝑞ℓ are left fibrations, it suffices to check
that we get equivalences on fibres, but this is clear from the construction of (–)ℓ .

Corollary 7.7.10. Suppose we have a pullback square of ∞-categories

F E

C B

𝑞 𝑝

where either

▶ 𝑝 is a cocartesian fibration, and the cocartesian transport functor over every mor-
phism 𝑓 : 𝑏 → 𝑏′ in B induces an equivalence ∥E𝑏 ∥ → ∥E𝑏′ ∥,

▶ or 𝑝 is a cartesian fibration, and the cartesian transport functor over every morphism
𝑓 : 𝑏 → 𝑏′ in B induces an equivalence ∥E𝑏′ ∥ → ∥E𝑏 ∥.
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Then the commutative square of ∞-groupoids

∥F∥ ∥E∥

∥C∥ ∥B∥

∥𝑞 ∥ ∥𝑝 ∥

is a pullback.

Proof. We prove the first case. Here we have a commutative diagram

F E

Fℓ Eℓ

C B

𝑞ℓ 𝑝ℓ

where the vertical maps in the top square give equivalences on localizations
by Lemma 7.7.8 and the bottom square is a pullback by Observation 7.7.9.
Moreover, our assumption on 𝑝 implies that 𝑝ℓ is a Kan fibration via Propo-
sition 7.7.6, since its straightening takes a morphism 𝑓 : 𝑏 → 𝑏′ to ∥–∥ applied
to the cocartesian transport along 𝑓 for 𝑝. The conclusion therefore follows
from Corollary 7.7.7. □

As a special case we have the following, first proved by Steimle [Ste21]:

Corollary 7.7.11. Suppose we have a pullback square of ∞-categories

F E

C B

𝑞 𝑝

where 𝑝 is both a cartesian and a cocartesian fibration. Then the commutative square of
∞-groupoids

∥F∥ ∥E∥

∥C∥ ∥B∥

∥𝑞 ∥ ∥𝑝 ∥

is a pullback.

Proof. If 𝑝 is both a cocartesian and a cartesian fibration, then it follows from
Corollary 6.3.7 that its cocartesian straigthening takes every morphism in B to
a left adjoint. The localization of a left adjoint is always an equivalence (since
the unit and counit transformations localize to natural equivalences), so the hy-
pothesis of Corollary 7.7.10 is satisfied. □
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As another application of these ideas we can prove an∞-categorical version
of Quillen’s “Theorem B”:

Corollary 7.7.12 (Quillen’s “Theorem B”). Suppose 𝑝 : E → B is a functor of
∞-categories such that for every map 𝑓 : 𝑏 → 𝑏′ in B, the morphism of ∞-groupoids

∥E/𝑏 ∥ → ∥E/𝑏′ ∥,

given by composition with 𝑓 , is an equivalence. Then the fibre of ∥𝑝 ∥ at 𝑏 ∈ B is
equivalent to ∥E/𝑏 ∥.

Proof. We have a pullback square

E/𝑏 E ×B Ar(B)

{𝑏} B

Fcoct (𝑝 )

and our assumption implies that the hypotheses of Corollary 7.7.10 hold for the
free cocartesian fibration on 𝑝, so this gives a pullback square on localizations.
In other words, the fibre of ∥Fcoct(𝑝)∥ at 𝑏 is ∥E/𝑏 ∥. Moreover, by (the dual of )
Proposition 6.4.7, the covariant equivalence 𝑝 → 𝐿ℓ

B
(𝑝) = Fcoct(𝑝)ℓ gives an

equivalence on localizations, so this also identifies the fibre of ∥𝑝 ∥, as required.
□
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Chapter 8

Kan extensions

8.1 Left Kan extensions in ∞-groupoids

We have seen that if all colimits over diagrams of shape K exist in C, then they
give a left adjoint to the constant diagram functor

const : C→ Fun(K,C),

which we can think of as given by restriction along the unique functor K→ ∗.
We now want to construct left and right Kan extensions, which will give left and
right adjoints to more general functors of the form

𝐹 ∗ : Fun(L,C) → Fun(K,C)

for some 𝐹 : K→ L. We start, as a warm-up, by giving a fibrational construc-
tion of left Kan extensions for functors to ∞-groupoids in this section. Then
we consider right Kan extensions in ∞-groupoids and finally we use these to
obtain general Kan extensions, using the Yoneda embedding.

Observation 8.1.1. If all pullbacks along a morphism 𝑓 : 𝑥 → 𝑦 exist in C, then
they give a right adjoint 𝑓 ∗ to the functor 𝑓! : C/𝑥 → C/𝑦 given by composition
with 𝑓 . Indeed for 𝑝 : 𝑧 → 𝑥 and 𝑞 : 𝑤 → 𝑦, we have a natural commutative
diagram

C/𝑥 (𝑝, 𝑓 ∗𝑞) C(𝑧, 𝑥 ×𝑦 𝑤) C(𝑧,𝑤)

{𝑝} C(𝑧, 𝑥) C(𝑧,𝑦)

⌟
(𝑓 ∗𝑞)∗

⌟
𝑞∗

𝑓∗

where the pullback in the composite square is also C/𝑦 (𝑓 𝑝, 𝑞).

Proposition 8.1.2. For a functor 𝑓 : A → B, the functor 𝑓 ∗ : LFib(B) → LFib(A)
given by pullback along 𝑓 has a left adjoint 𝑓!, which takes a left fibration 𝑝 over A to
Fcoct(𝑓 𝑝)ℓ .
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Proof. We saw in Lemma 6.4.2 that Fcoct(–)ℓ is left adjoint to the inclusion
LFib(B) ↩→ Cat∞/B. For 𝑞 ∈ LFib(B) we thus have natural equivalences

Map/B(Fcoct(𝑓 𝑝)ℓ , 𝑞) ≃ Map/B(𝑓 𝑝, 𝑞) ≃ Map/A(𝑝, 𝑓 ∗𝑞),

using Observation 8.1.1. This completes the proof by Corollary 6.3.7. □

Corollary 8.1.3. For any functor 𝑓 : A → B, the functor 𝑓 ∗ : Fun(B,Gpd∞) →
Fun(A,Gpd∞) given by composition with 𝑓 has a left adjoint 𝑓!, which takes a functor
𝜙 to one given by

𝑏 ↦→ colim
(𝑎,𝑓 𝑎→𝑏 ) ∈A/𝑏

𝜙 (𝑎) .

Proof. The existence of 𝑓! follows by straightening from Proposition 8.1.2. It
remains to identify the functor 𝑓!𝜙 . If 𝑝 : E→ A is the left fibration for 𝜙 , then
𝑓!𝜙 corresponds to

𝑏 ↦→ ∥E/𝑏 ∥ .

Here E/𝑏 → A/𝑏 is the left fibration for the composite

A/𝑏 → A
𝜙
−→ Gpd∞,

so by Proposition 5.2.3 we have an equivalence ∥E/𝑏 ∥ ≃ colimA/𝑏 𝜙 as required.
□

Exercise 8.1. Show that if 𝑞 : F → E and 𝑝 : E→ B are cocartesian fibrations, then so
is 𝑝𝑞 : F → B; a morphism in F is 𝑝𝑞-cocartesian if and only if it is 𝑞-cocartesian over
a 𝑝-cocartesian morphism in E.

Observation 8.1.4. Suppose 𝑓 : E → B is a cocartesian fibration. Then we
can instead compute 𝑓! on left fibrations as 𝑝 ↦→ (𝑓 𝑝)ℓ , since 𝑓 𝑝 is a cocartesian
fibration by Exercise 8.1 and we have

Map/B((𝑓 𝑝)ℓ , 𝑞) ≃ Mapcoct
/B (𝑓 𝑝, 𝑞) ≃ Map/B(𝑓 𝑝, 𝑞) ≃ Map/E(𝑝, 𝑓

∗𝑞),

where the second equivalence uses that 𝑞 is a left fibration. It follows that on
functors we can compute left Kan extensions along a cocartesian fibration 𝑓 by

𝑓!𝜙 (𝑏) ≃ colim𝑒∈E𝑏 𝜙 (𝑒).

Exercise 8.2. Show that for a cocartesian fibration 𝑝 : E→ B, the inclusion E𝑏 → E/𝑏

is a right adjoint (with the left adjoint taking (𝑒, 𝑝𝑒
𝑓
−→ 𝑏) to the cocartesian transport

𝑓!𝑒 ∈ E𝑏); it is therefore cofinal by Proposition 6.5.14.
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8.2 Right Kan extensions in ∞-groupoids

We now want to construct right Kan extensions for functors to Gpd∞. This is a
bit less straightforward than for left Kan extensions, since there is in general no
right adjoint to pullbacks in Cat∞. We will show, using our work on weighted
colimits, that the presheaf

(P→ B) ↦→ Map/A(A ×B P,Q)

on RFib(B) is representable for any functor 𝑓 : A → B and Q ∈ RFib(A). We
start with some observations on the functor (–)𝑟 from Observation 6.4.1.

Observation 8.2.1. For a right fibration 𝑝 : E→ B, the counit map

𝜖𝑟𝑝 : Fcart(𝑝)𝑟 → 𝑝

is an equivalence. This follows from Proposition 6.3.10 since Fcart(–)𝑟 is left
adjoint to the fully faithful inclusion RFib(B) ↩→ Cat∞/B by Lemma 6.4.2. We
can also see this from (the dual of ) Exercise 8.2 since on the fibre over 𝑏 the map

∥E𝑏/∥ → E𝑏

comes from the cartesian transport map, which is right adjoint to the inclusion
E𝑏 → E𝑏/; it is therefore cofinal, and so gives an equivalence on localizations by
Proposition 6.5.16.

Observation 8.2.2. For a functor 𝑓 : A→ B, we have a commutative square

RFib(B) Cart(B)

RFib(A) Cart(A),

𝑓 ∗ 𝑓 ∗

which induces a canonical natural transformation (a mate or Beck–Chevalley
transformation)

(𝑓 ∗–)𝑟 → 𝑓 ∗(–)𝑟 .

This is a natural equivalence, since it is clearly an equivalence on all fibres over
A.

Combining these observations, we see:

Lemma 8.2.3. For 𝑝 : P→ B in RFib(B) and 𝑓 : A→ B, the map

(𝑓 ∗𝜖𝑝)𝑟 : (𝑓 ∗Fcart(𝑝))𝑟 → 𝑓 ∗𝑝

is an equivalence. □
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This means that for P ∈ RFib(B), Q ∈ RFib(A) and 𝑓 : A → B, we have a
natural equivalence

Map/A(A ×B P,Q) ≃ Map/A((A ×B Ar(B) ×B P)𝑟 ,Q)
Map/A(A ×B Ar(B) ×B P,Q) .

Here we are pulling back P using the bifibration (𝑓 , id)∗Ar(B); we can therefore
apply Observation 7.3.2 and conclude:

Proposition 8.2.4. For Q → A in RFib(A) corresponding to 𝜙 ∈ PSh(A), the
presheaf

(P→ B) ↦→ Map/A(A ×B P,Q)
on RFib(B) is represented by the right fibration for the presheaf

𝑏 ↦→ Map/A(A/𝑏,Q) ≃ lim(A/𝑏 )op 𝜙

on B. □

Corollary 8.2.5. For any 𝑓 : A→ B, the functor 𝑓 ∗ : Fun(B,Gpd∞) → Fun(A,Gpd∞),
given by composition with 𝑓 , has a right adjoint

𝑓∗ : Fun(A,Gpd∞) → Fun(A,Gpd∞)

where for 𝜙 : A→ Gpd∞ we have

(𝑓∗𝜙) (𝑏) ≃ limA𝑏/ 𝜙.

Proof. The functor 𝑓 ∗ corresponds under straightening for right fibrations to
(𝑓 op)∗ : RFib(B) → RFib(A). This has a right adjoint by Proposition 8.2.4
and Corollary 6.3.7, which is given by the required formula (since (A𝑏/)op ≃
(Aop)/𝑏). □

Observation 8.2.6. If 𝑝 : E→ B is a cartesian fibration, then the map E𝑏 → E𝑏/
is coinitial for all 𝑏 ∈ B by (the dual of ) Exercise 8.2. We can therefore write
the formula for right Kan extension along 𝑝 as

(𝑝∗𝜙) (𝑏) ≃ limE𝑏 𝜙

for a fixed 𝑏.

Exercise 8.3 ((★)). Unpack the definitions to see that the unit and counit of the ad-
junction 𝑓 ∗ ⊣ 𝑓∗ from Corollary 8.2.5 are given pointwise by the map

(𝑓 ∗ 𝑓∗𝜙) (𝑎) ≃ limA×BB𝑓 (𝑎) / 𝜙 → limA𝑎/ 𝜙 ≃ 𝜙 (𝑎),

induced by the functor A𝑎/ → A ×B B𝑓 (𝑎)/, and

𝜓 (𝑏) ≃ limB/𝑏 𝜓 → lim𝑎∈A/𝑏 𝜓 (𝑓 𝑎) ≃ (𝑓∗ 𝑓 ∗𝜓 ) (𝑏),

induced by the projection A/𝑏 → B/𝑏 . Conclude (via Corollary 6.3.11) that if 𝑓 is fully
faithful then so is 𝑓∗.
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8.3 Kan extensions in general

Proposition 8.3.1. For a functor 𝑓 : A → B and an ∞-category C, we have the
following for the functor

𝑓 ∗ : Fun(B,C) → Fun(A,C)

given by composition with 𝑓 :

(1) If for every functor 𝜙 : A → C and 𝑏 ∈ B the limit limA𝑏/ 𝜙 exists in C, then 𝑓 ∗
has a right adjoint 𝑓∗, given by the formula

(𝑓∗𝜙) (𝑏) ≃ limA/𝑏 𝜙 ≃ limB(𝑏,𝑓 (–) )
A

𝜙.

(2) If for every functor 𝜙 : A→ C and 𝑏 ∈ B the colimit colimA/𝑏 𝜙 exists in C, then
𝑓 ∗ has a left adjoint 𝑓!, given by the formula

(𝑓!𝜙) (𝑏) ≃ colimA/𝑏 𝜙 ≃ colimB(𝑓 (–),𝑏 )
A

𝜙.

Exercise 8.4. Suppose we have a commutative square

C C′

D D′

𝑖

𝐹 𝐹 ′

𝑗

where 𝑖 and 𝑗 are fully faithful. Show that if 𝐹 ′ has a right adjoint 𝐺 ′ such that 𝐺 ′ 𝑗
factors through C, then this gives a right adjoint to 𝐹 .

Exercise 8.5. Show that if 𝐹 ⊣ 𝐺 , then 𝐺op ⊣ 𝐹 op.

Proof of Proposition 8.3.1. We first consider right Kan extensions. From the Yoneda
embedding yC we get a commutative diagram

Fun(B,C) Fun(B, PSh(C))

Fun(A,C) Fun(A, PSh(C))

𝑓 ∗ 𝑓 ∗

Here we can identify the right vertical functor as

(𝑓 ∗)∗ : Fun(Cop, Fun(B,Gpd∞)) → Fun(Cop, Fun(A,Gpd∞)),

which has a right adjoint (𝑓∗)∗ by Lemma 6.3.8 and Corollary 8.2.5. From Ex-
ercise 8.4 it follows that our original map 𝑓 ∗ for functors to C will have a right
adjoint if (𝑓∗)∗ preserves the image of the Yoneda embedding for C. In other
words, given 𝜙 : A→ C, we need

𝑐 ↦→ (𝑓∗C(𝑐, 𝜙)) (𝑏) ≃ limA𝑏/ C(𝑐, 𝜙)
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to be a representable presheaf for all 𝑏 ∈ B. By Corollary 7.1.9, this is true if
and only if the limit limA𝑏/ 𝜙 exists in C.

To deduce the statement for left Kan extensions, we use Exercise 8.5 and
identify (𝑓 ∗)op as

(𝑓 op)∗ : Fun(Bop,Cop) → Fun(Aop,Cop);

applying our result for right Kan extensions to 𝑓 op and Cop now gives the re-
quired statement. □

Observation 8.3.2. More generally, if C does not admit the required limits for
all functors from A, the argument above still shows that if for a fixed 𝜙 : A→ C

and 𝑓 : A → B, the limit limA𝑏/ 𝜙 exists in C, then there is a functor 𝑓∗𝜙 given
by these limits, such that

NatB,C(–, 𝑓∗𝜙) ≃ NatA,C(𝑓 ∗–, 𝜙) .

We call this the (pointwise) right Kan extension of 𝜙 along 𝑓 .

Warning 8.3.3. In general, we might say that any functor 𝑓∗𝜙 that represents
the presheaf NatA,C(𝜙, 𝑓 ∗–) on Fun(B,C) is a right Kan extension of 𝜙 along 𝑓 .
It is possible for such a right Kan extension to exist even if C does not have
the requsite limits over A𝑏/. Such non-pointwise Kan extensions should be
considered as rather pathological, however.

Lemma 8.3.4. Suppose 𝐹 : A → B is fully faithful. Then the left and right Kan
extension functors 𝐹!, 𝐹∗ : Fun(A,C) → Fun(B,C) are also fully faithful, when they
exist via the construction of Proposition 8.3.1.

Proof. It suffices to consider the case of right Kan extensions for functors to
Gpd∞, where by Proposition 6.3.10 we can equivalently show that the counit
map 𝑓 ∗ 𝑓∗𝜙 → 𝜙 is an equivalence. At 𝑎 ∈ A this unpacks to the map

limA𝑓 (𝑎)/ 𝜙 → limA𝑎/ 𝜙,

which is an equivalence since A𝑎/ ≃ A𝑓 (𝑎)/ for 𝑓 fully faithful, followed by
identifying the right-hand side with 𝜙 (𝑎). □

Observation 8.3.5. More generally, if 𝐹 : A → B is fully faithful, we see that
𝐹 ∗ : Fun(B,C) → Fun(A,C) restricts to an equivalence

Fun(B,C)is-Kan → Fun(A,C)has-Kan

between the full subcategory of functors B → C that are left (or right) Kan
extended from their restrictions to A, and that of functors A→ C that admit a
left (or right) Kan extension along 𝐹 .
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8.4 The universal property of presheaves

We can now prove the universal property of the∞-category PSh(C) of presheaves
on a small ∞-category C, namely that it is the free cocomplete ∞-category on
C.

Proposition 8.4.1. Suppose C is a small ∞-category and D is a cocomplete ∞-
category.

(i) For any functor 𝐹 : C → D, the left Kan extension y!𝐹 : PSh(C) → D of 𝐹
along the Yoneda embedding y exists and preserves colimits.

(ii) For every colimit-preserving functor𝐺 : PSh(C) → D, the counit map y!y∗𝐺 →
𝐺 is an equivalence.

Lemma 8.4.2. For a diagram𝑊 : I→ PSh(C), 𝑉 ∈ PSh(I), and a functor 𝐹 : C→
D, we have

colimcolim𝑉
I 𝑊

C
𝐹 ≃ colim𝑉

I colim𝑊 (𝑖 )
C

𝐹,

if both sides exist in D.

Proof. For 𝑑 ∈ D, we have natural equivalences

D(colimcolim𝑉
I 𝑊

C
𝐹, 𝑑) ≃ MapPSh(C) (colim𝑉

I 𝑊,D(𝐹, 𝑑))
≃ MapPSh(I) (𝑉 ,MapPSh(C) (𝑊,D(𝐹, 𝑑)))

≃ MapPSh(I) (𝑉 ,D(colim𝑊 (–)
C

𝐹, 𝑑))

≃ D(colim𝑉
I colim𝑊 (–)

C
𝐹, 𝑑),

so these two objects corepresent the same functor on D. □

Proof of Proposition 8.4.1. By Proposition 8.3.1, the left Kan extension y!𝐹 exists if
the weighted colimit

colimNat(y(–),𝜙 )
C

𝐹

exists in D for every 𝜙 ∈ PSh(C). By the Yoneda lemma the weight is equiva-
lent to colim𝜙

C
𝐹 ; this colimit exists in D since it is equivalent to a colimit over

the right fibration for 𝜙 , which is a small ∞-category. Thus y!𝐹 exists; to see
that it preserves colimits, we consider a diagram Φ : I → PSh(C) and apply
Lemma 8.4.2 to compute:

y!𝐹 (colimI Φ) ≃ colimcolimI Φ
C

𝐹 ≃ colimI colimΦ(–)
C

𝐹 ≃ colimI 𝐹 (Φ(–)) .

Now suppose 𝐺 : PSh(C) → D preserves colimits. For 𝜙 ∈ PSh(C), the
counit map

y!(y∗𝐺) (𝜙) → 𝐺 (𝜙)
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is the canonical map

colim𝜙

C
𝐺 ◦ y→ 𝐺 (colim𝜙

C
y),

which is an equivalence since 𝐺 preserves small colimits. □

Corollary 8.4.3. For a small ∞-category C and a cocomplete ∞-category D, the
restriction functor

y∗ : Fun(PSh(C),D) → Fun(C,D)
has a fully faithful left adjoint y!, and the adjunction restricts to an equivalence between
Fun(C,D) and the full subcategory of colimit-preserving functors PSh(C) → D.
Proof. From Lemma 8.3.4 we know that y! is fully faithful, since the Yoneda
embedding so. It follows from Proposition 8.4.1 that y! takes values in the full
subcategory of colimit-preserving functors, and also that every such functor is
in its image, so this must be precisely the image of y!. □

Proposition 8.4.4. For a functor 𝐹 : C→ D among small ∞-categories, we have

yC,!(yD ◦ 𝐹 ) ≃ 𝐹
op
! ,

so that there is a commutative square

C D

PSh(C) PSh(D) .

𝐹

yC yD

𝐹
op
!

Proof. The left Kan extension functor 𝐹 op
! is a left adjoint, and so preserves col-

imits by Exercise 7.1. By Corollary 8.4.3 it therefore suffices to identify 𝐹 op
! ◦ yC

with yD ◦ 𝐹 . To see this we compute

MapPSh(D) (𝐹
op
! yC(–),Φ) ≃ MapPSh(C) (yC(–),Φ ◦ 𝐹 op)

≃ Φ ◦ 𝐹 op

≃ MapPSh(D) (yD(–),Φ) ◦ 𝐹 op

≃ MapPSh(D) (yD ◦ 𝐹,Φ)

for Φ ∈ PSh(D). □

8.5 Retracts and idempotents

Definition 8.5.1. Let Ret denote the ordinary category with two objects 0, 1
and morphisms generated by 𝑓 : 0→ 1, 𝑟 : 1→ 0 such that 𝑟 𝑓 = id0. (In other
words, Ret is the universal category containing a retract.) The non-identity
morphisms of Ret are thus 𝑟, 𝑓 and 𝑖 = 𝑓 𝑟 (which is an idempotent in that 𝑖2 = 𝑖).
Let Idem be the full subcategory of Ret on the object 1; this is the universal
category containing an idempotent.

157



Fact 8.5.2. The commutative square

{0 < 2} [2]

∗ Ret

is a pushout of ∞-categories. (In other words, Ret is also the universal ∞-category
containing a retract.)

Warning 8.5.3. In ordinary categories, we can split an idempotent 𝑖 : 𝑥 → 𝑥

(that is, extend it to a retract diagram) by taking a finite colimit, e.g. the co-
equalizer of 𝑖 and id𝑥 . This is not true in∞-categories, as this finite colimit does
not take into account the higher coherence of the idempotent (e.g. if 𝑖2 ≃ 𝑖 then
we get a priori two different equivalences 𝑖3 ≃ 𝑖, but for an Idem-shaped dia-
gram they are the same). The following proposition says that sequential colimits
are enough to get splittings:

Proposition 8.5.4. Define a functor 𝐹 : N→ Idem, where N is the partially ordered
set of natural numbers, by 𝐹 (𝑛) = 1, 𝐹 (𝑛 → 𝑛 + 1) = 𝑖 . Then 𝐹 is cofinal.

Proof. We must show that N ×Idem Idem1/ is weakly contractible. This is an
ordinary category with objects (𝑛, 𝜖) = (𝑛, 1 𝜖−→ 𝐹 (𝑛)) where 𝜖 = id or 𝑖, and
morphisms

Hom((𝑛, 𝜖), (𝑛′, 𝜖′)) =
{
∗, 𝑛 < 𝑛′ and 𝜖′ = 𝑖, or 𝑛 = 𝑛′ and 𝜖 = 𝜖′

∅, otherwise.

In other words, N ×Idem Idem1/ is a partially ordered set where (𝑛, 𝜖) ≤ (𝑛′, 𝜖′)
if either 𝑛 ≤ 𝑛′ and 𝜖 = 𝜖′ = 𝑖 or 𝑛 < 𝑛′ and 𝜖 = id, 𝜖′ = 𝑖. We can depict this
poset as

(𝑛, id) (𝑛, 𝑖)

(𝑛 + 1, id) (𝑛 + 1, 𝑖)

(𝑛 + 2, id) (𝑛 + 2, 𝑖)

. . . . . . .

Here the copy of N given by {(𝑛, 𝑖)} is clearly cofinal, since N ×(N×IdemIdem1/ )
(N ×Idem Idem1/) (𝑛,𝜖 )/ has an initial object for all (𝑛, 𝜖). Here N is weakly con-
tractible as it has an initial object, so this completes the proof. □

Corollary 8.5.5. Idem is weakly contractible. □
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Corollary 8.5.6. Idem ↩→ Ret is cofinal.

Proof. We must show that Idem0/ and Idem1/ are weakly contractible. The latter
has an initial object, so this is weakly contractible by Observation 6.5.12. For
Idem0/, the forgetful functor Idem0/ → Idem is an equivalence, and so is weakly
contractible by Corollary 8.5.5. □

Corollary 8.5.7. Every functor Ret→ C is (pointwise) left Kan extended from Idem,
and such a left Kan extension exists for a functor Idem → C if and only if it has a
colimit.

Proof. We must show that Idem⊲
/0 → Ret⊲/0 → Ret→ C is a colimit cocone. This

follows because we have a commutative square

Idem/0 Ret/0

Idem Ret

where the vertical maps are equivalences and the bottom horizontal map is cofi-
nal by Corollary 8.5.6, and the cocone Ret⊲/0 → C is clearly a colimit as Ret/0 has
a terminal object. Moreover, this argument shows that the left Kan extension
of a functor from Idem exists precisely when the functor Idem/0

∼−→ Idem→ C

has a colimit. □

Combining this with Observation 8.3.5, we get:

Corollary 8.5.8. Fun(Ret,C) → Fun(Idem,C) is fully faithful, with image those
functors Idem→ C that have a colimit in C. □

Corollary 8.5.9. If a functor 𝜙 : Idem→ C has a colimit in C, then this is preserved
by any functor C 𝐹−→ D.

Proof. If 𝜙 has a colimit, then it extends uniquely to a functor 𝜙 ′ : Ret → C.
The composition of 𝜙 ′ with 𝐹 is again left Kan extended from Idem, so that the
colimit of 𝜙 is indeed preserved. □

Definition 8.5.10. An idempotent in an∞-category C is split if it is in the image
of Fun(Ret,C). We say that C is idempotent-complete if every idempotent is split.

Observation 8.5.11. An ∞-category C is idempotent-complete if and only if
every functor Idem→ C has a colimit. By Proposition 8.5.4 this is true if C has
sequential colimits, i.e. colimits over the poset N.

We would like to say that any∞-category has an idempotent-completion, ob-
tained by freely splitting its idempotents. We will prove this in the next section
by reformulating this in terms of absolute colimits.
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8.6 Absolute colimits and idempotent-completion

Definition 8.6.1. A presheaf 𝑊 : Kop → Gpd∞ is an absolute weight if a 𝑊 -
weighted colimit in an ∞-category C is preserved by any functor C→ D.

Observation 8.6.2. 𝑊 ∈ PSh(K) is an absolute weight if and only if for any
functors 𝜙 : K → C and 𝐹 : C → D, such that colim𝑊

K 𝜙 exists in C, the object
𝐹 (colim𝑊

K 𝜙) satisfies

D(𝐹 (colim𝑊
K 𝜙), 𝑑) ≃ lim𝑊

Kop D(𝜙,𝑑)

for all 𝑑 ∈ D. This holds if and only if the functor D(𝐹 (–), 𝑑) preserves the
weighted colimit. To show that𝑊 is absolute it therefore suffices to show that
the colimit is preserved by any functor C→ Gpdop

∞ .

Definition 8.6.3. LetC be a cocomplete∞-category. An object 𝑐 inC is absolute
if C(𝑐, –) preserves all colimits.

Remark 8.6.4. Absolute objects are also known as completely compact and tiny
objects.

Lemma 8.6.5. A presheaf𝑊 ∈ PSh(K) is an absolute weight if and only if it is an
absolute object of PSh(K).

Proof. First suppose𝑊 is an absolute weight. Since𝑊 ≃ colim𝑊
K y, for a colimit

colimI 𝜙 in PSh(K) we have

MapPSh(K) (𝑊, colimI 𝜙) ≃ MapPSh(K) (colim𝑊
C y, colimI 𝜙)

≃ lim𝑊
Cop MapPSh(K) (y, colimI 𝜙)

≃ lim𝑊
Cop colimI 𝜙

≃ lim𝑊
Cop colimIMapPSh(K) (y, 𝜙)

≃ colimIMapPSh(K) (colim𝑊
C y, 𝜙)

≃ colimIMapPSh(K) (𝑊,𝜙),

where we have used that the functor colimIMapPSh(K) (–, 𝜙) must preserve the
𝑊 -weighted colimit. Thus𝑊 is an absolute object.

Now suppose 𝑊 is an absolute object in PSh(K), and that 𝜙 : K → C is a
functor such that colim𝑊

K 𝜙 exists in C. By Observation 8.6.2 we want to show
that for any presheaf 𝜓 on C, we have

𝜓 (colim𝑊
K 𝜙) ≃ lim𝑊

Kop 𝜓 (𝜙).
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Here the right-hand side is equivalentlyMapPSh(K) (𝑊,𝜙op,∗𝜓 ). Since𝜓 ≃ colim𝜓

C
y,

𝜙op,∗ preserves colimits, and𝑊 is absolute, we can rewrite this as

MapPSh(K) (𝑊,𝜙op,∗𝜓 ) ≃ MapPSh(K) (𝑊, colim𝜓

C
𝜙op,∗yC)

≃ colim𝜓

C
MapPSh(K) (𝑊,C(𝜙, –))

≃ colim𝜓

C
C(colim𝑊

K 𝜙, –)

≃ (colim𝜓

C
yC) (colim𝑊

K 𝜙)
≃ 𝜓 (colim𝑊

K 𝜙)

as required, where the third equivalence uses the definition of colim𝑊
K 𝜙 . □

We can now simply say that a presheaf is absolute if it satisfies the equivalent
conditions of Lemma 8.6.5.

Example 8.6.6. The representable presheaf K(–, 𝑘) is absolute.

Example 8.6.7. The terminal weight for Idem is absolute by Corollary 8.5.9.

Lemma 8.6.8. Absolute objects are closed under absolute colimits. In other words, if
𝑊 ∈ PSh(K) is an absolute weight, and 𝜙 : K → C is a functor such that 𝜙 (𝑘) is an
absolute object of C, then the colimit colim𝑊

K 𝜙 is absolute, if it exists.

Proof. We have

C(colim𝑊
K 𝜙, –) ≃ MapPSh(K) (𝑊,C(𝜙, –)) .

Here C(𝜙, –) : C → PSh(K) preserves colimits since these are computed point-
wise and the values of𝜙 are absolute, hence so does the composite withMapPSh(K) (𝑊, –)
since𝑊 is an absolute presheaf by Lemma 8.6.5. □

Proposition 8.6.9. A weight𝑊 ∈ PSh(K) is absolute if and only if it is a retract of
a representable presheaf.

Observation 8.6.10. Suppose C is an ordinary category, and 𝐹 : K → C is a

functor, where K is an ∞-category. Then 𝐹 factors as K → ℎK
𝐹 ′−→ C. We

claim that the colimit of 𝐹 is the same as that if 𝐹 ′, if either exist. Indeed, since
Fun(K,C) ≃ Fun(ℎK,C), the colimit of 𝐹 represents the presheaf

MapFun(K,C) (𝐹, const(–) ) ≃ MapFun(ℎK,C) (𝐹 ′, const(–) ) .

Proof of Proposition 8.6.9. Suppose first that 𝜙 is an absolute presheaf. We know
that 𝜙 ≃ colimE y ◦ 𝑝 where 𝑝 : E→ K is the right fibration for 𝜙 , so that

Map(𝜙, 𝜙) ≃ colimEMap(𝜙, y ◦ 𝑝) .
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Here we have

𝜋0(colimEMap(𝜙, y ◦ 𝑝)) ≃ colimℎE 𝜋0Map(𝜙, y ◦ 𝑝),

since 𝜋0 is a left adjoint and Set is an ordinary category. The right-hand side
is a colimit of sets, so we can conclude that there exists some 𝑒 ∈ E and [𝑓 ] ∈
𝜋0Map(𝜙, y(𝑝 (𝑒))) that maps to the component of [id𝜙 ] on the left-hand side.
This means that the composite

𝜙
𝑓
−→ y(𝑝 (𝑒)) → 𝜙

is equivalent to id𝜙 , i.e. 𝜙 is a retract of the representable presheaf y(𝑝 (𝑒)), as
required.

Conversely, a retract of a representable is absolute since representable presheaves
are absolute (Example 8.6.6), retracts are colimits over Idem (Corollary 8.5.8),
these are absolute (Example 8.6.7), and absolute colimits of absolute presheaves
are again absolute (Lemma 8.6.8). □

Corollary 8.6.11. An∞-category has all absolute colimits if and only if it is idempotent-
complete.

Definition 8.6.12. For a small ∞-category C, let Cidem denote the full subcat-
egory of PSh(C) spanned by the absolute presheaves, that is by the retracts of
idempotents in C.

Observation 8.6.13. It follows from Lemma 8.6.8 that Cidem is closed under ab-
solute colimits in PSh(C), and so it is in particular idempotent-complete. More-
over, Cidem is a small ∞-category, since the ∞-category Fun(Idem,C) of idem-
potents in C is small.

Proposition 8.6.14. Suppose D is an idempotent-complete ∞-category. Then any
functor C → D admits a left Kan extension to Cidem and any functor Cidem → D is
left Kan extended from C. In particular, any functor C → D factors uniquely through
Cidem.

Proof. For 𝜙 ∈ Cidem and 𝐹 : C→ D, the colimit of

C/𝜙 → C
𝐹−→ D

is equivalently the colimit of 𝐹 weighted by 𝜙 , which exists in D since 𝜙 is
absolute. Hence 𝐹 has a left Kan extension to Cidem. Conversely, given a functor
𝐺 : Cidem → D, the canonical map

colim𝜙

C
𝐺 → 𝐺 (colim𝜙

C
y) ≃ 𝐺 (𝜙)

is an equivalence, since this is an absolute colimit. Thus 𝐺 is left Kan extended
from C. □

162



Definition 8.6.15. Proposition 8.6.14 gives for any functor 𝑓 : C→ D a unique
commutative square

C D

Cidem Didem.

𝑓

𝑓 idem

We say that 𝑓 is a Morita equivalence if 𝑓 idem is an equivalence of ∞-categories.

Observation 8.6.16. Suppose 𝐹 : C → D is left adjoint to 𝐺 . If D admits small
colimits and𝐺 preserves these, then 𝐹 preserves absolute objects, since for 𝑥 ∈ C
absolute we have

D(𝐹 (𝑥), colim𝜙) ≃ C(𝑥, colim𝐺𝜙) ≃ colimD(𝐹 (𝑥), 𝜙).

In particular, for any functor 𝑓 : C→ D, the left Kan extension (𝑓 op)! : PSh(C) →
PSh(D) preserves absolute objects, since its right adjoint (𝑓 op)∗ preserves col-
imits. Since we moreover have a commutative square

C D

PSh(C) PSh(D)

𝑓

(𝑓 op )!

from Proposition 8.4.4, it follows that 𝑓 idem must (by uniqueness) be the restric-
tion of (𝑓 op)! to absolute presheaves.

Proposition 8.6.17. Suppose M is a cocomplete ∞-category and C is a small ∞-
category. Then the unique colimit-preserving functor 𝐹 : PSh(C) → M extending a
functor 𝑖 : C→M is an equivalence if and only if the following conditions hold:

(1) 𝑖 is fully faithful.

(2) The objects 𝑖 (𝑐) are absolute for all 𝑐 ∈ C.

(3) Every object of M is the colimit of a small diagram in C.

Proof. It is clear that these conditions are necessary, so it remains to show that
they imply that 𝐹 is an equivalence. The last assumption implies that 𝐹 is es-
sentially surjective, so it remains to show that it is fully faithful. For this we
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compute

M(𝐹 (𝜙), 𝐹 (𝜓 )) ≃M(𝐹 (colim𝜙

C
y), 𝐹 (colim𝜓

C
y))

≃ lim𝜙

Cop M(𝑖, colim𝜓

C
𝑖)

≃ lim𝜙

Cop colim𝜓

C
C(–, –)

≃ lim𝜙

Cop colim𝜓

C
MapPSh(C) (y, y)

≃ MapPSh(C) (colim𝜙

C
y, colim𝜓

C
y)

≃ MapPSh(C) (𝜙,𝜓 ),

using that 𝑖 is fully faithful and takes values in absolute objects in M. □

Corollary 8.6.18. For any ∞-category C, the inclusion 𝑖 : C ↩→ Cidem induces an
equivalence (𝑖op)∗ : PSh(Cidem) ∼−→ PSh(C).

Proof. The fully faithful inclusion Cidem ↩→ PSh(C) satisfies the assumptions
of Proposition 8.6.17 and so extends to an equivalence PSh(Cidem) ∼−→ PSh(C).
Its composition with (𝑖op)! is moreover the identity, since this is the unique a
colimit-preserving functor that extends the Yoneda embedding. It follows that
(𝑖op)! is an equivalence, with inverse its right adjoint (𝑖op)∗. □

Corollary 8.6.19. A functor 𝑓 : C → D is a Morita equivalence if and only if
(𝑓 op)∗ : PSh(D) → PSh(C) is an equivalence.

Proof. Suppose 𝑓 is a Morita equivalence. Then the commutative square from
Definition 8.6.15 induces a commutative square

PSh(Didem) PSh(Cidem)

PSh(D) PSh(C) .

(𝑓 idem,op )∗

∼ ∼

(𝑓 op )∗

It 𝑓 idem is an equivalence, it follows that so is (𝑓 op)∗. Conversely, if (𝑓 op)∗ is an
equivalence, then so is its left adjoint (𝑓 op)!, and therefore so is its restriction to
the full subcategories of absolute objects, which is 𝑓 idem by Observation 8.6.16.

□

Corollary 8.6.20. An ∞-category M is equivalent to a presheaf ∞-category if and
only if M is cocomplete and there exists a small full subcategory of absolute objects that
generates M under colimits. □
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8.7 (★) Kan extensions and cofinality via weighted (co)limits

We can also use weighted colimits together with the desription of natural trans-
formations in terms of ends (§7.5) to prove the pointwise formula for Kan ex-
tensions:

Proposition 8.7.1. Given functors 𝜙 : C → D and 𝐹 : C → E, if the weighted
colimits colimD(𝜙 (–),𝑑 )

C
𝐹 exist in E for all 𝑑 ∈ D, then the functor

𝜙!𝐹 := colimD(𝜙 (–),–)
C

𝐹

is a left Kan extension of 𝐹 along 𝜙 . Dually, if the weighted limits limD(𝑑,𝜙 (–) )
C

𝐹 exist
in E for all 𝑑 ∈ D, then the functor

𝜙∗𝐹 := limD(–,𝜙 (–) )
C

𝐹

is a right Kan extension of 𝐹 along 𝜙 .

Proof. Let𝐺 be a functorD→ E. We prove the statement for left Kan extensions
by the computation1

MapFun(D,E) (𝜙!𝐹,𝐺) ≃ limD(–,–)
(𝑥,𝑦) ∈Dop×D E(colimD(𝜙 (–),𝑥 ) )

C
𝐹,𝐺 (𝑦))

≃ limD(–,–)
(𝑥,𝑦) ∈Dop×DMapPSh(C) (D(𝜙 (–), 𝑥),E(𝐹,𝐺 (𝑦))

≃ MapFun(D,PSh(𝐶 ) ) (D(𝜙, –),E(𝐹,𝐺))
≃ MapFun(Cop,Fun(D,Spc) ) (D(𝜙, –),E(𝐹,𝐺))

≃ limCop (–,–)
(𝑐,𝑐′ ) ∈C×Cop MapFun(D,Spc) (D(𝜙 (𝑐), –),E(𝐹 (𝑐′),𝐺))

≃ limCop (–,–)
(𝑐,𝑐′ ) ∈C×Cop E(𝐹 (𝑐′),𝐺 (𝜙 (𝑐)))

≃ MapFun(C,E) (𝐹,𝐺 ◦ 𝜙),

where the penultimate equivalence uses the Yoneda Lemma. □

We can also (independently of Proposition 8.7.1) use weighted colimits to
understand cofinality, as a special case of the following computation of (co)limits
weighted by a left Kan extension:

Proposition 8.7.2. Given 𝜙 : C → D, 𝑊 : C → Spc and 𝐹 : D → E, we have a
natural equivalence

lim𝜙!𝑊

D
𝐹 ≃ lim𝑊

C 𝐹 ◦ 𝜙,

if either limit exists. Dually, for 𝑉 : Cop → Spc we have

colim(𝜙
op )!𝑉

D
𝐹 ≃ colim𝑉

C 𝐹 ◦ 𝜙.
1We leave it as an exercise for the reader to check if we have actually shown that all of these

equivalences are sufficiently natural to justify the conclusion. . .
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Proof. We have

E(𝑒, lim𝜙!𝑊

D
𝐹 ) ≃ MapFun(D,Spc) (𝜙!𝑊,E(𝑒, 𝐹 ))
≃ MapFun(C,Spc) (𝑊,E(𝑒, 𝐹 ◦ 𝜙))

≃ E(𝑒, lim𝑊
C 𝐹 ◦ 𝜙).

The case of colimits is proved similarly. □

Corollary 8.7.3. A functor 𝜙 : C→ D induces an equivalence on limits

limD 𝐹
∼−→ limC 𝐹 ◦ 𝜙

for any functor 𝐹 : D → E such that either limit exists, if and only if 𝜙 is coinitial in
the sense that ∥C/𝑑 ∥ ≃ ∗ for all 𝑑 ∈ D.

Proof. It suffices to consider functors to Gpd∞, so we may assume all small limits
exist in D. For a functor 𝐹 : D→ E, Proposition 8.7.2 then gives an equivalence

limC 𝐹 ◦ 𝜙 ≃ limconst∗
C 𝐹 ◦ 𝜙 ≃ lim𝜙!const∗

D
𝐹,

where
𝜙!(const∗) (𝑑) ≃ colimC/𝑑 const∗ ≃ ∥C/𝑑 ∥ .

If the right-hand side is contractible here we thus get

limC 𝐹 ◦ 𝜙 ≃ limD 𝐹,

as required. The converse follows as in the proof of Theorem 6.5.13. □

8.8 (★) Full faithfulness via Kan extensions

In this section we’ll discuss a trick, due to [HRS25], for checking full faithfulness
using left Kan extensions and the Yoneda embedding:

Proposition 8.8.1 (Haine–Ramzi–Steinebrunner). A functor 𝐹 : C → D is fully
faithful if and only if 𝐹 op

! : PSh(C) → PSh(D) is fully faithful.

Proof. We know that if 𝐹 is fully faithful then so is 𝐹 op, and left Kan extension
along a fully faithful functor is fully faithful (Lemma 8.3.4). On the other hand,
we have a commutative square

C D

PSh(C) PSh(D),

𝐹

yC yD

𝐹
op
!

so if 𝐹 op
! is fully faithful then so is 𝐹 by the dual of Lemma 2.4.5. □
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We’ll discuss two applications of this: we’ll show that the maps K,L→ K★L

into a join are fully faithful, and that fully faithful functors are closed under
cobase change. For the first result we need the following input:

Lemma 8.8.2. If 𝑝 : E→ B is a cartesian fibration with fibrewise initial objects, then
𝑝 has a fully faithful left adjoint, given by the inclusion of these in E.

Proof. Let E0 be the full subcategory of E on the fibrewise initial objects. We
know that 𝑝 restricts to an equivalence 𝑝0 : E0

∼−→ B, and we claim that the

composite 𝑠 : B
𝑝−1

0−−−→ E0 ↩→ E of is a left adjoint to 𝑝, with unit transformation
the equivalence 𝑝𝑠 ≃ idB. Indeed, we have that

E(𝑠 (𝑏), 𝑒) → B(𝑝𝑠 (𝑏), 𝑝𝑒) ≃ B(𝑏, 𝑝𝑒)

is an equivalence by Observation 5.5.2. □

Corollary 8.8.3. For any ∞-categories A and B, the canonical functors A,B ↩→
A★B are fully faithful.

Proof. It suffices to prove that one of the two inclusions is fully faithful, since
we have (A ★ B)op ≃ Bop ★ Aop, and fully faithful functors are preserved by
taking opposites. Now observe that, by definition of the join, we have for any
∞-categories L and K a pullback square

Fun(K★L,C) Fun(K × L, Ar(C))

Fun(K,C) × Fun(L,C) Fun(K × L,C) × Fun(K × L,C),

(ℓ∗,𝑟 ∗ )

where ℓ and 𝑟 denote the canonical functors K,L→ K★L. Thus the left verti-
cal functor (ℓ∗, 𝑟 ∗) is a bifibration, and in particular the restriction ℓ∗ : Fun(K★

L,C) → Fun(K,C) is a cartesian fibration with fibre Fun(L,C𝜙/) at 𝜙 . By
(the dual of ) Corollary 5.5.10 this has an initial object if 𝜙 has a colimit in C

(given by the constant functor that selects the colimit cone). We conclude from
Lemma 8.8.2 that ℓ∗ has a fully faithful left adjoint if C has all colimits of shape
K. This applies in particular to C being Gpd∞. Taking K = Bop and L = Aop we
can then conclude from Proposition 8.8.1 that B→ A★B is fully faithful. □

For our second application we need the following input:

Proposition 8.8.4. Suppose we have a pullback square of ∞-categories

C′ D′

C D

𝐺 ′

𝑝 𝑞

𝐺

where 𝐺 has a fully faithful left adjoint. Then 𝐺 ′ also has a fully faithful left adjoint.
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Proof. Let 𝐹 be the left adjoint to𝐺 ; since 𝐹 is fully faithful, the counit is a natural
equivalence idD ≃ 𝐺𝐹 (Proposition 6.3.10). We therefore have a homotopy in
the outer square in

D′

C′ D′

C D,

𝐹 ′

idD′

𝐹𝑞
𝐺 ′

𝑝 𝑞

𝐺

so that there is a unique filler 𝐹 ′. For 𝑥 ∈ D′ and 𝑦 ∈ C′ we then have a
commutative diagram

C′(𝐹 ′𝑥,𝑦) D′(𝐺 ′𝐹 ′𝑥,𝐺 ′𝑦) D′(𝑥,𝐺 ′𝑦)

C(𝐹𝑞𝑥, 𝑝𝑦) D(𝐺𝐹𝑞𝑥,𝐺𝑝𝑦) D(𝑞𝑥,𝐺𝑝𝑦)

⌟

∼

∼
∼

where the left square is a pullback since C′ is a pullback (Lemma 7.4.2). Thus
the top left morphism is also an equivalence, which shows that the equivalence
idD′ ≃ 𝐺 ′𝐹 ′ is the counit of an adjunction 𝐹 ′ ⊣ 𝐺 ′ where 𝐹 ′ is hence fully faithful
(by Proposition 6.3.10 again). □

Corollary 8.8.5 (Haine–Ramzi–Steinebrunner). Suppose

A B

C D

𝑓

𝑝 𝑞

𝑔

is a pushout square of ∞-categories such that 𝑓 is fully faithful. Then 𝑔 is also fully
faithful.

Proof. By Proposition 8.8.1 it suffices to show that (𝑔op)! : PSh(C) → PSh(D) is
fully faithful. Taking presheaves on the pushout square we get a pullback square
(Proposition 7.4.3)

PSh(D) PSh(C)

PSh(B) PSh(A).

(𝑔𝑜𝑝 )∗

(𝑞𝑜𝑝 )∗ (𝑝𝑜𝑝 )∗

(𝑓 𝑜𝑝 )∗

Since 𝑓 is fully faithful, the functor (𝑓 op)∗ has a fully faithful left adjoint (Propo-
sition 8.8.1), and so the same is true of (𝑔op)∗) by Proposition 8.8.4. Since left
adjoints are unique, this shows that (𝑔op)! is indeed fully faithful. □

168



Chapter 9

Finite and filtered ∞-categories

9.1 Interlude on set theory

Up to now we have been pretty cavalier about size issues for (∞-)categories.
Since we’re about to talk about various finiteness conditions, this seems a good
point to try to make things a little more precise.

Notation 9.1.1. Recall that a cardinal is an isomorphism class of sets; for a set 𝑆
we denote its cardinal by |𝑆 |.

Definition 9.1.2. For a cardinal 𝜅, a set 𝑆 is 𝜅-finite if |𝑆 | < 𝜅.

Definition 9.1.3. A cardinal 𝜅 is regular if

▶ 𝜅 is infinite,

▶ given a family of sets 𝑆𝑖 , 𝑖 ∈ 𝐼 such that |𝐼 | < 𝜅 and |𝑆𝑖 | < 𝜅 for all 𝑖, then∐
𝑖∈𝐼 𝑆𝑖 also has cardinality < 𝜅.

Example 9.1.4. The countable cardinal 𝜔 = ℵ0 is regular. The 𝜔-finite sets are
just the finite ones.

Definition 9.1.5. A cardinal 𝜅 is a strong limit if 𝜆 < 𝜅 implies 2𝜆 < 𝜅.

Definition 9.1.6. A cardinal is inaccessible if it is uncountable, regular, and a
strong limit.

Definition 9.1.7. A (Grothendieck) universe is a set 𝑈 such that

▶ for 𝑆 ∈ 𝑈 and 𝑇 ∈ 𝑆 , we have 𝑇 ∈ 𝑈 ,

▶ for 𝑆 ∈ 𝑈 , we have 𝑃 (𝑆) ∈ 𝑈 (where 𝑃 (𝑆) is the power set 2𝑆 ),

▶ N ∈ 𝑈 ,

▶ for 𝐼 ∈ 𝑈 and 𝑓 : 𝐼 → 𝑈 , we have
⋃

𝑖∈𝐼 𝑓 (𝑖) ∈ 𝑈 .
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Exercise 9.1. If 𝑈 is a Grothendieck universe, then |𝑈 | is an inaccessible cardinal.

Definition 9.1.8. The von Neumann hierarchy is the family of sets𝑉𝛼 defined by

𝑉𝛼 =
⋃
𝛽<𝛼

𝑃 (𝑉𝛽 ),

starting with 𝑉0 = ∅.

Observation 9.1.9. A cardinal𝜅 is inaccessible if and only if𝑉𝜅 is a Grothendieck
universe — thus Grothendieck universes exist if and only if inaccessible cardi-
nals do.

Definition 9.1.10. If 𝑈 is a Grothendieck universe, then the elements of 𝑈 are
called the 𝑈 -small sets.

Remark 9.1.11. If𝑈 is a universe, then the𝑈 -small sets give a model of the ZFC
axioms.

We have implicitly assumed the existence of at least one universe, so that
it makes sense to talk about a large (∞-)category of (𝑈 -)small (∞-)categories.
In category theory it is usually convenient to assume at least a weak version of
Grothendieck’s universe axiom, which says that for any set there exists a universe
that contains it.

For more background on set theory and categories we recommend the ex-
pository paper [Shu08] by Shulman. There is also a nice series of blog posts by
Leinster on large cardinals, starting with [Lei21].

9.2 Finite ∞-categories

For ordinary categories, it is common to say that a category C is (essentially)
finite if it contains finitely many isomorphism classes of objects and each set
of morphisms between these is finite. This notion of finiteness does not ex-
tend to ∞-categories, however. In fact, there is no intrinsic characterization of
finiteness for ∞-categories — instead, we have to define this notion indirectly:

Definition 9.2.1. For a regular cardinal 𝜅, we define the full subcategory

Cat𝜅-fin
∞ ⊆ Cat∞

of 𝜅-finite ∞-categories to be spanned by the smallest collection of objects such
that

▶ ∅, [0], [1] are 𝜅-finite,

▶ Cat𝜅-fin
∞ is closed under pushouts,

▶ Cat𝜅-fin
∞ is closed under coproducts indexed by 𝜅-finite sets.
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We will refer to 𝜔-finite ∞-categories as simply finite; in this case, the closure
under finite coproducts is automatic once we have ∅ and pushouts.

Remark 9.2.2. We can similarly define the 𝜅-finite ∞-groupoids by omitting
[1] in this definition. In terms of topology, the finite ∞-groupoids then corre-
spond to the finite CW-complexes.

Remark 9.2.3. In terms of quasicategories, we can characterize the 𝜅-finite
∞-categories as those that can be modelled by a (non-fibrant) simplicial set that
has a 𝜅-finite set of non-degenerate simplices.

Proposition 9.2.4.

(1) An ∞-category C has 𝜅-finite colimits if and only if it has an initial object,
pushouts, and ( for 𝜅 > 𝜔) coproducts indexed by 𝜅-finite sets.

(2) Suppose C is an ∞-category with 𝜅-finite colimits. Then a functor 𝐹 : C → D

preserves 𝜅-finite colimits if and only if 𝐹 preserves the initial object, pushouts, and
( for 𝜅 > 𝜔) 𝜅-finite coproducts.

Proof. To prove (1), we let X ⊆ Cat∞ be the full subcategory on those ∞-
categories K such that C has all K-indexed colimits. We want to show that
X contains Cat𝜅-fin

∞ . By assumption X contains ∅, and it also contains [0] and
[1] since these have a terminal object. It therefore suffices to show that X is
closed under pushouts and 𝜅-finite coproducts. This follows from the fact that
colimits over a colimit of ∞-categories decompose as in Corollary 7.4.5. Part
(2) is proved in the same way. □

Corollary 9.2.5. The ∞-category Cat𝜅-fin
∞ is closed under 𝜅-finite colimits. □

Proposition 9.2.6. Cat𝜅-fin
∞ is closed under products.

Proof. Let X ⊆ Cat∞ be the full subcategory on those ∞-categories K such that
K × – preserves 𝜅-finite ∞-categories. (Then X ⊆ Cat𝜅-fin

∞ since K ∈ X implies
K× [0] ≃ K is 𝜅-finite.) Clearly X contains ∅ and [0], and since –× – preserves
colimits in each variable we see that X is closed under pushouts and 𝜅-finite
coproducts. It therefore only remains to show that [1] ∈ X. Let Y ⊆ Cat∞
therefore be the full subcategory of∞-categories L such that [1] ×L is 𝜅-finite.
Again we see that L contains ∅ and [0] and is closed under pushouts and 𝜅-
finite coproducts, so we only need to show that [1] × [1] is 𝜅-finite. But this
decomposes as a pushout [2] ⨿[1] [2] where [2] ≃ [1] ⨿[0] [1] is 𝜅-finite. □

Exercise 9.2. Assuming that for every small ∞-category there is some (small) regular
cardinal 𝜅 such that it is 𝜅-finite, show that an ∞-category has all small colimits if and
only if it has an initial object, pushouts, and coproducts indexed by all small sets.

Exercise 9.3. Show that K is 𝜅-finite if and only if Kop is 𝜅-finite.
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9.3 Filtered ∞-categories

Definition 9.3.1. An ∞-category I is 𝜅-filtered for a regular cardinal 𝜅 if for
every 𝜅-finite ∞-category K and functor 𝜙 : K → I, the undercategory I𝜙/ is
weakly contractible. We usually abbreviate 𝜔-filtered to filtered.

Example 9.3.2. If I has a terminal object, then I is 𝜅-filtered for any 𝜅, since
I𝜙/ also has a terminal object for any 𝜙 (Proposition 5.6.8), and so is weakly
contractible (Observation 6.5.12).

Lemma 9.3.3. If I has 𝜅-finite colimits, then I is 𝜅-filtered.

Proof. Given 𝜙 : K → I with K 𝜅-finite, then the colimit of 𝜙 gives an ini-
tial object of I𝜙/, so that this ∞-category is in particular weakly contractible
(Observation 6.5.12). □

Observation 9.3.4. If 𝜆 < 𝜅 then any 𝜅-filtered ∞-category is also 𝜆-filtered,
since a 𝜆-finite∞-category as also𝜅-finite. In particular a𝜅-filtered∞-category
is in particular filtered, for any regular cardinal 𝜅.

Observation 9.3.5. Taking 𝜙 to be the unique functor ∅ → I, we get I𝜙/ ≃ I,
so a 𝜅-filtered ∞-category is in particular weakly contractible.

Exercise 9.4. Suppose that I is a retract of J via 𝑓 : I → J and 𝑟 : J → I such that
𝑟 𝑓 ≃ idI. Show that for any diagram 𝑝 : K→ I, the∞-category I𝑝/ is a retract of J𝑓 𝑝/.
Conclude that if J is 𝜅-filtered then so is I.

Lemma 9.3.6. If I is 𝜅-filtered, then for every functor 𝜙 : K → I with K 𝜅-finite,
the undercategory I𝜙/ is also 𝜅-filtered.

Proof. A diagram 𝜓 : L → I𝜙/ is the same thing as a diagram 𝜓 ′ : L ★K → I

that restricts to 𝜙 on K, and (I𝜙/)𝜓/ ≃ I𝜓 ′/ by Proposition 5.6.1. Here L★K is
again 𝜅-finite since this is the pushout

L ⨿L×K×{0} L ×K × [1] ⨿L×K×{1} K,

where all the pieces are 𝜅-finite by Proposition 9.2.6. The ∞-category I𝜓 ′/ is
therefore weakly contractible, as required. □

Observation 9.3.7. I is 𝜅-filtered if and only if the diagonal functor I →
Fun(K, I) is cofinal for every 𝜅-finite K.

Lemma 9.3.8. If I is 𝜅-filtered, then I𝑖/ → I is cofinal for any 𝑖 ∈ I.

Proof. For 𝑗 ∈ I we have I𝑖/ ×I I𝑗/ ≃ I{𝑖, 𝑗 }/ by Corollary 7.4.4, and the latter is
weakly contractible since I is 𝜅-filtered. □

To compare our definition of filtered ∞-categories to that used by Lurie
[Lur09,Ker], which is also useful to find examples thereof, we need the follow-
ing fact:
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Fact 9.3.9. Suppose an ∞-category I has the property that any functor K → I from
a finite ∞-category K extends to a cocone K⊲ → I. Then I is weakly contractible.

Remark 9.3.10. The reason Fact 9.3.9 is true is that every morphism 𝑆𝑛 → ∥I∥
lifts to some functor K→ I with K finite — the extension to K⊲ then provides
a nullhomotopy of the map from 𝑆𝑛. If we model I by a quasicategory, then we
can see this by describing ∥I∥ using Kan’s Ex∞-functor.

Proposition 9.3.11. Given Fact 9.3.9, an∞-category I is 𝜅-filtered if and only if ev-
ery diagram K→ I with K 𝜅-finite extends to a cocone K⊲ → I, i.e. the undercategory
I𝜙/ is non-empty.

Proof. We must show that this apparently weaker condition implies that I is 𝜅-
filtered. The argument from Lemma 9.3.6 also implies that this condition is
inherited by slices, so this reduces to showing that if the condition holds for I
then I must be weakly contractible — this follows from Fact 9.3.9. □

Corollary 9.3.12. A partially ordered set (𝑆, <) gives a 𝜅-filtered ∞-category if and
only if every 𝜅-finite set of elements in 𝑆 has an upper bound.

Proof. If 𝑖 : 𝑇 → 𝑆 is the inclusion of a 𝜅-finite set of elements, then an upper
bound for this subset is precisely an object of 𝑆𝑖/, so this must exist of 𝑆 is 𝜅-
filtered. Conversely, a diagram 𝑝 : K→ 𝑆 with K a 𝜅-finite∞-category factors
uniquely first through ℎK and then through the truncation of ℎK to a poset
𝑃 , which is necessarily 𝜅-finite (as the 𝜅-finite posets are closed under pushouts
and 𝜅-finite coproducts). An upper bound in 𝑆 for the images of the elements
of 𝑃 then provides an extension of 𝑝 to K⊲ → 𝑆 . This implies that 𝑆 is filtered
by Proposition 9.3.11. □

Example 9.3.13. The partially ordered sets N and Z are filtered.

Exercise 9.5. An ordinary category C is usually said to be filtered if

▶ C ≠ ∅,

▶ for any two objects 𝑥,𝑦 in C there exists an object 𝑧 with morphisms 𝑥 → 𝑧 and
𝑦 → 𝑧,

▶ for any two parallel morphisms 𝑓 , 𝑔 : 𝑥 → 𝑦 there exists a third morphism ℎ : 𝑦 → 𝑧

such that ℎ𝑓 = ℎ𝑔.

Using Proposition 9.3.11, show that this is equivalent to C being filtered as an ∞-
category.

Theorem 9.3.14 (Lurie). An ∞-category I is 𝜅-filtered if and only if I-indexed
colimits commute with 𝜅-finite limits in Gpd∞. That is, if K is 𝜅-finite then for every
functor 𝐹 : K × I→ Gpd∞, the canonical map

colim𝑘∈K lim𝑖∈I 𝐹 (𝑘, –) → lim𝑖∈I colimK 𝐹 (–, 𝑖)
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is an equivalence. Equivalently, the colimit functor

colimI : Fun(I,Gpd∞) → Gpd∞

preserves 𝜅-finite limits.

One direction is easy:

Lemma 9.3.15. If I-indexed colimits commute with 𝜅-filtered limits for some ∞-
category I, then I is 𝜅-filtered.

Proof. For 𝜙 : K→ I with K 𝜅-finite, we know from Corollary 7.1.7 that I𝜙/ →
I is the left fibration for the functor

𝑥 ↦→ limK I(𝜙, 𝑥) .

Therefore ∥I𝜙/∥ is the colimit colim𝑥∈I limK I(𝜙, 𝑥). We can rewrite this as

lim𝑘∈K colimI I(𝜙 (𝑘), –) ≃ lim𝑘∈K ∥I𝜙 (𝑘 )/∥ ≃ limK ∗ ≃ ∗,

where we have used that I𝜙 (𝑘 )/ is weakly contractible (since it has an initial
object, Observation 6.5.12). Thus I𝜙/ is weakly contractible, as required. □

The converse direction, that colimits over 𝜅-filtered∞-categories commute
with 𝜅-finite limits in Gpd∞, is much more involved, and we defer the proof to
§9.9.

9.4 Compact objects

Definition 9.4.1. Let C be an ∞-category with 𝜅-filtered colimits. An object
𝑐 ∈ C is 𝜅-compact if the functor

C(𝑐, –) : C→ Gpd∞

preserves 𝜅-filtered colimits. The full subcategory of C on its 𝜅-compact objects
will be denoted C𝜅 . We refer to 𝜔-compact objects as just compact.

Proposition 9.4.2. 𝜅-compact objects of an ∞-category C are closed under 𝜅-finite
colimits and retracts in C.

Proof. First consider a diagram 𝑝 : K→ C with K 𝜅-finite. We then have

C(colimK 𝑝, –) ≃ limKop C(𝑝, –)

This preserves 𝜅-filtered colimits by Theorem 9.3.14, since Kop is 𝜅-finite (Ex-
ercise 9.3). On the other hand, if 𝑐 is a retract of 𝑐′ and the latter is 𝜅-compact,
then C(𝑐, –) is a retract of C(𝑐′, –), and therefore preserves 𝜅-filtered colimits
since a retract of an equivalence is an equivalence. □
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Remark 9.4.3. If 𝜅 is uncountable, then Proposition 8.5.4 shows that splittings
of idempotents can be computed by a 𝜅-finite colimit, so that the closure under
retracts is actually redundant. This is not true for 𝜅 = 𝜔 , however.

Fact 9.4.4. [1] is a compact object of Cat∞.

Exercise 9.6. Show that if C ≃ colimK 𝐹 is a filtered colimit in Cat∞, then C≃ ≃
colimK 𝐹≃, and mapping ∞-groupoids in C are filtered colimits of those in 𝐹 (𝑘).

Exercise 9.7. Use Fact 9.4.4 and the fact that [1] detects equivalences to show that
filtered colimits commute with finite limits in Cat∞.

Corollary 9.4.5. 𝜅-finite ∞-categories are 𝜅-compact objects in Cat∞.

Proof. Both sides contain ∅, [0], [1] and are closed under 𝜅-finite colimits. □

We would like to characterize the 𝜅-compact objects in ∞-categories of
presheaves. For this we need to use the following:

Fact 9.4.6. Every small ∞-category is the colimit of a small 𝜅-filtered diagram of
𝜅-finite ∞-categories.

Exercise 9.8. Show that an ∞-category is cocomplete if and only if it has 𝜅-filtered
colimits and 𝜅-finite colimits for some regular cardinal 𝜅.

Proposition 9.4.7. A presheaf 𝜙 ∈ PSh(C) is 𝜅-compact if and only if 𝜙 is a retract
of a 𝜅-finite colimit of representables.

Proof. We first suppose 𝜙 is 𝜅-compact. Let 𝑝 : E→ C be the right fibration for
𝜙 , so that 𝜙 ≃ colimE y ◦ 𝑝. By Fact 9.4.6 we can write E as colimK 𝐹 where
K is 𝜅-filtered and 𝐹 : K → Cat∞ is a diagram of 𝜅-finite ∞-categories. By
Corollary 7.4.5 we then have

MapPSh(C) (𝜙, 𝜙) ≃ MapPSh(C) (𝜙, colimK colim𝐹 (–) y◦𝑝) ≃ colimKMapPSh(C) (𝜙, colim𝐹 (–) y◦𝑝) .

Arguing as in the proof of Proposition 8.6.9 it follows that there exists some
𝑘 ∈ K such that 𝜙 is a retract of colim𝐹 (𝑘 ) y ◦ 𝑝, which is a 𝜅-finite colimit of
representables.

For the converse, suppose that 𝜙 is a retract of a 𝜅-finite colimit of repre-
sentables. Representable presheaves are 𝜅-compact (since they are even abso-
lute, Example 8.6.6), and 𝜅-compact objects are closed under 𝜅-finite colimits
and retracts by Proposition 9.4.2, so 𝜙 is indeed 𝜅-compact. □

9.5 Flat presheaves and filtered cocompletions

In this section we will show that any small∞-category has a free cocompletion
under 𝜅-filtered colimits.
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Definition 9.5.1. A presheaf 𝐹 : Cop → Gpd∞ is 𝜅-flat if for the associated right
fibration E → C, the ∞-category E is 𝜅-filtered. We write Ind𝜅 (C) for the full
subcategory of PSh(C) spanned by the 𝜅-flat functors; for 𝜅 = 𝜔 we just write
Ind(C).

Exercise 9.9. Show that a presheaf 𝑊 is 𝜅-flat if and only if 𝑊 -weighted colimits
commute with 𝜅-finite limits in Gpd∞.

Example 9.5.2. Representable presheaves are 𝜅-flat for any 𝜅 by Example 9.3.2,
since the corresponding right fibration is of the form I/𝑥 → I, where I/𝑥 has a
terminal object. Moreover, any retract of a representable presheaf is 𝜅-flat since
𝜅-filtered ∞-categories are closed under retracts (Exercise 9.4).

Observation 9.5.3. If 𝜆 < 𝜅 then Ind𝜅 (C) ⊆ Ind𝜆 (C), since every 𝜅-filtered
∞-category is also 𝜆-filtered. On the other hand, by Example 9.5.2 we always
have Cidem ⊆ Ind𝜅 (C). 1

Our goal is to show that Ind𝜅 (C) is the free cocompletion of C under 𝜅-
filtered colimits.

Remark 9.5.4. The notation Ind(C) comes from the name ind-object of C for
a formal colimit of a filtered diagram in C. Here “ind-object” comes from the
somewhat old-fashioned term “inductive limit” for a filtered colimit. (Confus-
ingly, “inductive limit” is also an old name for “colimit”.)

Proposition 9.5.5. A 𝜅-filtered colimit of 𝜅-filtered ∞-categories is again 𝜅-filtered.

Proof. Suppose I = colim𝑗∈J I𝑗 where J and each I𝑗 is 𝜅-filtered. Using Theo-
rem 9.3.14, we must show that I-indexed colimits commute with 𝜅-finite col-
imits in Gpd∞. But we have colimI ≃ colimJ colimI𝑗 by Corollary 7.4.5, so this
is true as all of these colimits commute with 𝜅-finite limits. □

Exercise 9.10. We can also prove Proposition 9.5.5 without using Theorem 9.3.14:
Consider 𝜙 : K→ I with K 𝜅-finite. Then K is a 𝜅-compact object of Cat∞ by Corol-
lary 9.4.5, so that

Map(K, I) ≃ colim𝑗∈JMap(K, I𝑗 ).
It follows (by taking 𝜋0, as in the proof of Proposition 8.6.9) that 𝜙 factors through
𝜙 ′ : K→ I𝑗 for some index 𝑗 . Since J𝑗/ → J is cofinal by Lemma 9.3.8, we can identify
I as colim𝑗 ′∈J𝑗/ I𝑗 ′ . Show that we then get an equivalence

I𝜙/ ≃ colim𝑗 ′∈J𝑗/ (I𝑗 ′ )𝜙 ′𝑗 ′ /

where 𝜙 ′
𝑗 ′ is the composite K

𝜙 ′

−→ I𝑗 → I𝑗 ′ , and conclude from this that I is filtered.

Exercise 9.11. Show that the full subcategory of right fibrations over C is closed under
filtered colimits in Cat∞/C.

1In fact, if we make 𝜅 sufficiently large relative to C then Ind𝜅 (C) reduces to just the
idempotent-completion Cidem.
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Corollary 9.5.6. Ind𝜅 (C) is closed under 𝜅-filtered colimits in PSh(C).

Proof. 𝜅-filtered colimits in PSh(C) are equivalently𝜅-filtered colimits in RFib(C),
and these are computed in Cat∞ by Exercise 9.11 and (the dual of ) Corol-
lary 5.6.11. It therefore follows from Proposition 9.5.5 that 𝜅-flat presheaves are
closed under 𝜅-filtered colimits. □

Corollary 9.5.7. A presheaf is 𝜅-flat if and only if it is a 𝜅-filtered colimit of repre-
sentables.

Proof. Suppose F → C is the right fibration for a presheaf 𝐹 . Then (Observa-
tion 7.3.6) 𝐹 is the colimit of the composite

F→ C
y
−→ PSh(C).

If 𝐹 is 𝜅-flat this shows that it is a 𝜅-filtered colimit of representables. Con-
versely, representable presheaves are𝜅-flat by Example 9.5.2, and𝜅-flat presheaves
are closed under 𝜅-filtered colimits by Corollary 9.5.6. □

Proposition 9.5.8. Suppose C has 𝜅-finite colimits. Then a presheaf 𝐹 on C is 𝜅-flat
if and only if it preserves 𝜅-finite limits.

Proof. The representable presheaves preserve 𝜅-finite limits, and presheaves that
do so are closed under 𝜅-filtered colimits (since 𝜅-filtered colimits commute
with 𝜅-finite limits in Gpd∞). Corollary 9.5.7 therefore implies that all 𝜅-flat
presheaves preserve 𝜅-finite colimits. Conversely, if 𝐹 preserves 𝜅-finite limits
then the total space of the corresponding right fibration admits 𝜅-finite colimits
by Corollary 7.6.8, and so is 𝜅-filtered by Lemma 9.3.3. □

Proposition 9.5.9. Suppose C is a small ∞-category and D is an ∞-category with
𝜅-filtered colimits.

(i) Every functor C → D admits a left Kan extension to a functor Ind𝜅 C → D,
and this preserves 𝜅-filtered colimits.

(ii) Every functor Ind𝜅 C→ D that preserves 𝜅-filtered colimits is left Kan extended
from its restriction to C.

Proof. Let 𝑖 denote the fully faithful inclusion C ↩→ Ind𝜅 C. The Kan extension
of a functor 𝐹 : C → D along 𝑖 exists if for every 𝜙 ∈ Ind𝜅 C the colimit of the
composite

C/𝜙 → C
𝐹−→ D

exists in D. Here C/𝜙 → C is the right fibration for the presheaf 𝜙 ; as 𝜙 is 𝜅-flat,
this is a 𝜅-filtered colimit, and so by assumption this colimit indeed exists in
D. Now we check that 𝑖!𝐹 preserves 𝜅-filtered colimits: using Lemma 8.4.2 we
have

𝑖!𝐹 (colimI 𝜙) ≃ colimcolimI 𝜙

C
𝐹 ≃ colimI colim𝜙

C
𝐹 ≃ colimI 𝑖!𝐹 (𝜙),
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since all of these colimits are 𝜅-filtered and so exist in D.
Now consider a functor 𝐺 : Ind𝜅 C → D that preserves 𝜅-filtered colimits.

Then
(𝑖!𝑖∗𝐺) (𝜙) → 𝐺 (𝜙)

is the canonical map

colim𝜙

C
𝐺 ◦ 𝑖 → 𝐺 (colim𝜙

C
𝑖 (–)),

which is an equivalence since𝐺 preserves 𝜅-filtered colimits and 𝜙 is 𝜅-flat. □

Corollary 9.5.10. Suppose C is a small ∞-category and D is an ∞-category with
𝜅-filtered colimits. Then the restriction

Fun(Ind𝜅 C,D) → Fun(C,D)

has a fully faithful left adjoint with image the functors that preserve 𝜅-filtered colimits.
□

Observation 9.5.11. For a functor of small ∞-categories 𝑓 : C → D, Proposi-
tion 9.5.9 implies that there is a unique commutative square

C D

Ind𝜅 C Ind𝜅 D

𝑓

Ind𝜅 𝑓

where Ind𝜅 𝑓 preserves𝜅-filtered colimits. We claim that Ind𝜅 𝑓 is the restriction
of the left Kan extension functor 𝑓 op

! . We have a commutative square

C D

PSh(C) PSh(D) .

𝑓

yC yD

𝑓
op

!

from Proposition 8.4.4, which shows in particular that 𝑓 op
! preserves repre-

sentable presheaves. Since it also preserves 𝜅-filtered colimits (being a left ad-
joint) it follows from Corollary 9.5.7 that 𝑓 op

! restricts to a functor Ind𝜅 C →
Ind𝜅 D. Moreover, this restriction preserves 𝜅-filtered colimits, since these are
computed in presheaves by Corollary 9.5.6. By uniqueness we must therefore
have

Ind𝜅 𝑓 ≃ 𝑓
op

! |Ind𝜅 C

as claimed.
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9.6 Recognizing filtered cocompletions

In this section we will characterize the∞-categories that are of the form Ind𝜅 C
for some small ∞-category C and regular cardinal 𝜅, and also show that the
functor Ind𝜅 𝑓 induced by a functor 𝑓 of small∞-categories is an equivalence if
and only if 𝑓 is a Morita equivalence. The starting point for this is the following
variant of Proposition 8.6.17:

Proposition 9.6.1. Suppose M is an ∞-category with 𝜅-filtered colimits and C is a
small∞-category. Then the unique 𝜅-filtered-colimit-preserving functor 𝐹 : Ind𝜅 C→
M extending a functor 𝑖 : C→M is an equivalence if and only if the following condi-
tions hold:

(1) 𝑖 is fully faithful.

(2) The objects 𝑖 (𝑐) are 𝜅-compact for all 𝑐 ∈ C.

(3) Every object of M is the colimit of a small 𝜅-filtered diagram in C.

Proof. This follows by exactly the same argument as in the proof of Proposi-
tion 8.6.17. □

Variant 9.6.2. The same proof shows that 𝐹 is fully faithful if and only if 𝑖 is
fully faithful and takes values in 𝜅-compact objects.

Corollary 9.6.3. For any small ∞-category C, the inclusion 𝑖 : C ↩→ Cidem induces
an equivalence 𝑖op

! : Ind𝜅 C
∼−→ Ind𝜅 Cidem.

Proof. The inclusion Cidem ↩→ Ind𝜅 C satisfies the conditions of Proposition 9.6.1
and so extends to an equivalence 𝛼 : Ind𝜅 Cidem → Ind𝜅 C. The composition
of 𝛼 with 𝑖

op
! is moreover the identity, since this restricts to the composite

C → Cidem → Ind𝜅 C whose unique 𝜅-filtered-colimit-preserving extension
is idInd𝜅 C. Thus 𝑖op

! ≃ Ind𝜅 𝑖 is also an equivalence. □

Proposition 9.6.4. For any small ∞-category C, the full subcategory (Ind𝜅 C)𝜅 of
𝜅-compact objects is an idempotent-completion of C.

Proof. We know Cidem ⊆ Ind𝜅 C from Example 9.5.2. Since 𝜅-filtered colimits
are computed in PSh(C) (Corollary 9.5.6), the objects of Cidem are 𝜅-compact.
It remains to show that any 𝜅-compact object 𝜙 of Ind𝜅 C is a retract of a rep-
resentable presheaf. Let 𝑝 : E → C be the right fibration for 𝜙 ; then we know
𝜙 ≃ colimE y ◦ 𝑝, where E is a 𝜅-filtered ∞-category. It follows that

MapInd𝜅 (C) (𝜙, 𝜙) ≃ colimEMapInd𝜅 (C) (𝜙, y ◦ 𝑝).

Arguing as in the proof of Proposition 8.6.9 it follows that id𝜙 has to be the
image of some map 𝜙 → y ◦ 𝑝 (𝑒), i.e. that 𝜙 is a retract of some y(𝑝 (𝑒)), as
required. □
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Corollary 9.6.5. For a functor 𝑓 : C→ D of small∞-categories, the induced functor
Ind𝜅 𝑓 : Ind𝜅 C→ Ind𝜅 D is an equivalence if and only if 𝑓 is a Morita equivalence.

Proof. Suppose Ind𝜅 𝑓 is an equivalence. Then it restricts to an equivalence on
the full subcategories of 𝜅-compact objects, and so is a Morita equivalence by
Proposition 9.6.4. Conversely, if 𝑓 is a Morita equivalence we get a commuta-
tive square

Ind𝜅 C Ind𝜅 D

Ind𝜅 Cidem Ind𝜅 Didem

Ind𝜅 𝑓

∼ ∼

Ind𝜅 𝑓 idem

where the vertical maps are equivalences by Corollary 9.6.3. Thus if 𝑓 idem is an
equivalence, so is Ind𝜅 𝑓 . □

Corollary 9.6.6. The following are equivalent for an ∞-category M:

(1) There exists an equivalence M ≃ Ind𝜅 C for some small ∞-category C.

(2) M has 𝜅-filtered colimits and there exists a small full subcategory of 𝜅-compact
objects that generates M under 𝜅-filtered colimits.

(3) M has 𝜅-filtered colimits, the full subcategory M𝜅 of 𝜅-compact objects is small,
and this generates M under 𝜅-filtered colimits.

Proof. The equivalence of (1) and (2) is immediate from Proposition 9.6.1, while
(3) immediately implies (2). It only remains to observe that (1) implies that M𝜅

is small, since by Proposition 9.6.4 it is equivalent to Cidem, which is small (Ob-
servation 8.6.13). □

Observation 9.6.7. If M satisfies the equivalent conditions of Corollary 9.6.6,
then the inclusion M𝜅 ↩→M extends to an equivalence

Ind𝜅 M𝜅 ∼−→M.

9.7 Accessible ∞-categories

Definition 9.7.1. An ∞-category C is 𝜅-accessible if it satisifies the equivalent
criteria of Corollary 9.6.6. We say that C is accessible if it is 𝜅-accessible for some
regular cardinal 𝜅.

Definition 9.7.2. Suppose C is an accessible∞-category. A functor 𝐹 : C→ D

is called accessible if it preserves 𝜅-filtered colimits for some 𝜅 (and so also for all
𝜆 > 𝜅).
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Example 9.7.3. Cat∞ is 𝜅-accessible for any regular cardinal 𝜅, since 𝜅-finite
∞-categories are compact (Corollary 9.4.5) and these generate Cat∞ under 𝜅-
filtered colimits by Fact 9.4.6.

Example 9.7.4. For any small∞-category C, the presheaf∞-category PSh(C)
is 𝜅-accessible for any 𝜅. Indeed, by Proposition 9.4.7 the full subcategory
PSh(C)𝜅 of 𝜅-compact objects consists of retracts of colimits of 𝜅-finite dia-
grams in C, and so is small as the set of equivalence classes of 𝜅-finite diagrams
in C is small. Moreover, this generates PSh(C) under 𝜅-filtered colimits, since
every presheaf is a small colimit of representables, and this can be rewritten as
a 𝜅-filtered colimit of 𝜅-finite colimits of representables using Fact 9.4.6.

Lemma 9.7.5. Any accessible ∞-category C is locally small.

Proof. Suppose C is 𝜅-accessible for some regular cardinal 𝜅; then C𝜅 is a small
∞-category. Given objects 𝑥 and 𝑦, we can write them as 𝜅-filtered colimits
𝑥 ≃ colim𝑘∈K 𝑥𝑘 , 𝑦 ≃ colimℓ∈L𝑦ℓ of 𝜅-compact objects. We then have

C(𝑥,𝑦) ≃ lim𝑘∈Kop C(𝑥𝑘 , 𝑦) ≃ lim𝑘∈Kop colimℓ∈L C𝜅 (𝑥𝑘 , 𝑦ℓ ) .

This is a small ∞-groupoid since C𝜅 is small, and small ∞-groupoids are closed
under small limits and colimits. □

Somewhat surprisingly, we have:

Theorem 9.7.6. A small ∞-category C is accessible if and only if C is idempotent-
complete.

We refer the reader to [Lur09, §5.4.3] for a proof (for now).

Warning 9.7.7. If C is a 𝜅-accessible ∞-category and 𝜆 > 𝜅, then it is not
necessarily true that C is 𝜆-accessible. However, we can always increase the
index of accessiblity if we make 𝜆 sufficiently large in the following technical
sense:

Definition 9.7.8. For regular cardinals 𝜅 and 𝜆, we write 𝜅 ≪ 𝜆 if for any
𝜅0 < 𝜅 and 𝜆0 < 𝜆 we have 𝜆𝜅0

0 < 𝜆.

Example 9.7.9. We have 𝜔 ≪ 𝜅 for every regular cardinal 𝜅.

Observation 9.7.10. For any regular cardinal 𝜅, there exist arbitrarily large
regular cardinals 𝜆 with 𝜅 ≪ 𝜆. For example, we can take 𝜆 to be the successor
of any cardinal of the form 𝜏𝜅 .

Remark 9.7.11. The notation 𝜅 ≪ 𝜆 is slightly confusing, as we for instance
have 𝜔 ≪ 𝜔 . If 𝜅 is an uncountable regular cardinal, then 𝜅 ≪ 𝜅 if and only if
𝜅 is inaccessible.
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Fact 9.7.12. Suppose 𝜆 ≫ 𝜅 . Then any 𝜅-filtered ∞-category is a 𝜆-filtered colimit
of 𝜆-finite 𝜅-filtered ∞-categories.

Proposition 9.7.13. Suppose C is a 𝜅-accessible ∞-category and 𝜆 is a regular car-
dinal such that 𝜆 > 𝜅 and 𝜆 ≫ 𝜅 . Then C is also 𝜆-accessible.

Proof. Let C′ ⊆ C be the full subcategory spanned by the colimits of all 𝜆-finite
𝜅-filtered diagrams in C𝜅 . Since the set of equivalence classes of such diagrams
is small, C′ is a small ∞-category. Moreover, it consists of 𝜆-compact objects
(since 𝜅-compact objects are in particular 𝜆-compact and 𝜆-compact objects are
closed under 𝜆-finite colimits by Proposition 9.4.2). It remains to show that C′
generates C under 𝜆-filtered colimits. For an object 𝑥 ∈ C, we know there exists
a diagram 𝐹 : K→ C𝜅 , with K 𝜅-filtered, whose colimit is 𝑥 . By Fact 9.7.12 we
can write K as a 𝜆-filtered colimit of 𝜆-finite 𝜅-filtered ∞-categories, say as
K ≃ colimℓ∈LKℓ . Then Corollary 7.4.5 implies that

𝑥 ≃ colimK 𝐹 ≃ colimℓ∈L colimKℓ
𝐹 |Kℓ

.

Here colimKℓ
𝐹 |Kℓ

is an object of C′, so 𝑥 is a 𝜆-filtered colimit of objects of C′,
as required. □

The main point of accessibility is that this condition is preserved under many
categorical constructions (but possibly with a larger index of accessibility). We
end this section by stating some important results of this form — since the proofs
get rather technical, we will not discuss them (for now?) and refer the reader
to [Lur09, §5.4] for details.

Theorem 9.7.14. If C is an accessible∞-category and K is a small∞-category, then
Fun(K,C) is accessible.

Theorem 9.7.15. Given a diagram 𝑝 : K → Ĉat∞ of (large) ∞-categories where
𝑝 (𝑘) is an accessible ∞-category for every 𝑘 ∈ K and 𝑝 (𝑓 ) is an accessible functor for
every morphism 𝑓 in K, then:

(1) The ∞-category limK 𝑝 is accessible.

(2) A functor C→ limK 𝑝 where C is accessible, is accessible if and only if the composite
C→ 𝑝 (𝑘) is accessible for every 𝑘 ∈ K.

9.8 (★) Confluent ∞-categories

Everything in this section is due to Christian Sattler and David Wärn [SW25].

Definition 9.8.1. An∞-category I is confluent if and only if I𝜙/ is weakly con-
tractible for any cospan 𝜙 : Λ2

0 → I.
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Observation 9.8.2. Since Λ2
0 is the pushout {0 < 1} ⨿{0} {0 < 2}, for any

cospan 𝜙 : Λ2
0 → I we get a decomposition

I𝜙/ ≃ I𝜙01/ ×I𝜙 (0)/ I𝜙02/,

where 𝜙0𝑖 := 𝜙 (0 → 𝑖). Here I𝜙0𝑖/ → I𝜙 (𝑖 )/ is an equivalence, so we can view
this as the pullback

I𝜙/ ≃ I𝜙 (1)/ ×I𝜙 (0)/ I𝜙 (2)/,

where the maps are given by composition with 𝜙01 and 𝜙02. Thus I is confluent
if and only if for all pairs of morphisms 𝑥 → 𝑦, 𝑥 → 𝑧 in I, the induced pullback

I𝑦/ ×I𝑥/ I𝑧/

is weakly contractible.

Example 9.8.3. Any∞-category with pushouts is confluent, since I𝜙/ then has
an initial object.

Lemma 9.8.4. I is confluent if and only if for every 𝑓 : 𝑥 → 𝑦 in I, the functor
𝑓 ∗ : I𝑦/ → I𝑥/ is cofinal.

Proof. 𝑓 ∗ is cofinal when for every 𝑔 : 𝑥 → 𝑧, the ∞-category

(I𝑦/)𝑔/ := I𝑦/ ×I𝑥/ (I𝑥/)𝑔/

is weakly contractible. Here (I𝑥/)𝑔/ ≃ I𝑧/, so this gives precisely the pullbacks
that are required for I to be confluent in Observation 9.8.2. □

The following is a key closure property of confluent ∞-categories:

Lemma 9.8.5. Suppose 𝑝 : E → B is a left fibration and B is confluent. Then E is
also confluent.

Proof. Given morphisms 𝑓 : 𝑒 → 𝑒′ and 𝑔 : 𝑒 → 𝑒′′ in E, we must show that
the pullback E𝑒′/ ×E𝑒/ E𝑒′′/ is weakly contractible. But this is equivalent to
B𝑝𝑒′/ ×B𝑝𝑒/ B𝑝𝑒′′/ since 𝑝 is a left fibration, and this is weakly contractible when
B is confluent. □

Our main aim is to prove the following:

Theorem 9.8.6 (Sattler–Wärn). An ∞-category I is confluent if and only if I-
indexed colimits in Gpd∞ commute with pullbacks.

Lemma 9.8.7. Suppose 𝑝 : E → B is a left fibration and B is confluent. Then
𝐿𝑟
B
(𝑝) := Fcart(𝑝)𝑟 is a Kan fibration.
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Proof. Here Fcart(𝑝) is the cartesian fibration for the functor 𝑏 ↦→ E×BB𝑏/ with
functoriality given by composition. We must show that for 𝑓 : 𝑏′ → 𝑏, the
functor

𝑓 ∗ : E ×B B𝑏/ → E ×B B𝑏′/

localizes to an equivalence. But this is the pullback along the left fibration 𝑝 of
the functor 𝑓 ∗ : B𝑏/ → B𝑏′/, which is cofinal by Lemma 9.8.4. This functor
is therefore itself cofinal by Corollary 6.5.17 and so gives an equivalence on
localizations by Proposition 6.5.16. □

Lemma 9.8.8. Suppose we have a pullback square of ∞-categories

Q E

F B

𝑞′

𝑝′ 𝑝

𝑞

where 𝑝 and 𝑞 are left fibrations and B is confluent. Then the commutative square of
∞-groupoids

∥Q∥ ∥E∥

∥F∥ ∥B∥ .

∥𝑞′ ∥

∥𝑝′ ∥ ∥𝑝 ∥
∥𝑞 ∥

is also a pullback.

Proof. From Corollary 6.4.6 we get a pullback square

𝐿𝑟
E
(𝑞′) E

𝐿𝑟
B
(𝑞) B.

𝑝

Since contravariant equivalences give equivalences on localizations by Propo-
sition 6.4.7 it suffices to show that this square gives a pullback on localizations.
But here the horizontal morphisms are Kan fibrations by Lemma 9.8.7, so this
follows from Corollary 7.7.7. □

Proof of Theorem 9.8.6. If colimits over I commute with pullbacks, then for 𝑥 →
𝑦 and 𝑥 → 𝑧 in I we have

∥I𝑦/ ×I𝑥/ I𝑧/∥ ≃ colim𝑖∈I I(𝑦, 𝑖) ×I(𝑥,𝑖 ) I(𝑧, 𝑖)
≃
(
colim𝑖∈I I(𝑦, 𝑖)

)
×colim𝑖∈I I(𝑥,𝑖 )

(
colim𝑖∈I I(𝑧, 𝑖)

)
≃ ∥I𝑦/∥ ×∥I𝑥/ ∥ ∥I𝑧/∥
≃ ∗,
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so that I is confluent. For the converse we want to show that the colimit functor
Fun(I,Gpd∞) → Gpd∞ preserves pullbacks. In terms of fibrations, this means
that the functor

LFib(I)
∥–∥
−−−→ Gpd∞

preserves pullbacks. Since pullbacks in LFib(I) are computed in Cat∞, this fol-
lows from Lemma 9.8.8 as the source of any left fibration over I is confluent
by Lemma 9.8.5 and any morphism between left fibrations over I is itself a left
fibration (Observation 3.2.7). □

9.9 (★) Filtered colimits and finite limits

Our goal in this section is to prove Theorem 9.3.14 as a consequence of Theo-
rem 9.8.6. We start by relating filtered and confluent ∞-categories:

Proposition 9.9.1. An∞-category is filtered if and only if it is confluent and weakly
contractible.

Proof. Suppose I is confluent and weakly contractible, and let X ⊂ Cat∞ be
the full subcategory of ∞-categories K such that I𝜙/ is weakly contractible for
every functor 𝜙 : K → I. Since I is weakly contractible, we have ∅ ∈ X, and
we also have [0], [1] ∈ X as any slice for these has an initial object. To show
that all finite∞-categories lie in X it then suffices to show that X is closed under
pushouts. Given a pushout

K0 K1

K2 K

and a functor 𝜙 : K→ I, let 𝜙𝑖 := 𝜙 |K𝑖
; we have an equivalence

I𝜙/ ≃ I𝜙1/ ×I𝜙0/
I𝜙2/,

which gives an equivalence

∥I𝜙/∥ ≃ ∥I𝜙1/∥ ×∥I𝜙0/ ∥ ∥I𝜙2/∥,

since I is confluent and the right-hand side can be viewed as a pullback of col-
imits over I. If K𝑖 is in X for 𝑖 = 0, 1, 2 it follows that I𝜙/ is weakly contractible,
so that K also lies in X as required. □

Combining this with Lemma 9.8.5, we get:

Corollary 9.9.2. Suppose I is filtered and E→ I is a left fibration. Then E is filtered
if and only if it is weakly contractible.
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We can now prove the finite case of Theorem 9.3.14:

Corollary 9.9.3. Suppose I is a filtered ∞-category. Then I-indexed colimits in
Gpd∞ commute with finite limits.

Proof. Let X ⊆ Cat∞ be the full subcategory of ∞-categories K such that I-
indexed colimits commute with K-indexed limits. Then X contains ∅ as I is
weakly contractible; it also contains limits over [0] and [1] since these contain
an initial object. To see that X contains all finite ∞-categories it then suffices
to show that it is closed under pushouts. This holds because I-indexed colim-
its in Gpd∞ commute with pullbacks by Theorem 9.8.6, since I is confluent,
and a limit over a pushout in Cat∞ decomposes as a pullback of limits over the
components of the pushout by the dual of Corollary 7.4.5. □

Proposition 9.9.4. Suppose I is a 𝜅-filtered ∞-category and E𝑠 → I is a collection
of left fibrations indexed by a 𝜅-finite set 𝑆 . If each E𝑠 is filtered, then so is

I ×∏
𝐼 I

∏
𝑠∈𝑆𝑆

E𝑠 .

Proof. Let Q := I ×∏
𝐼 I

∏
𝐼 E𝑖 . We use the criterion of Proposition 9.3.11. Given

𝜙 : K→ Q with K finite, we want to show there exists an extension to K⊲. By
assumption each E𝑠 is filtered, so the composite K→ E𝑠 admits an extension to
K⊲ for every 𝑠. We obtain a diagram of shape

∐
𝑠 K

⊲ → I. Here the source is
a 𝜅-finite ∞-category, so this extends over a right cone as I is 𝜅-filtered. Now
we use that Q→ I is a left fibration to construct a compatible extension over K⊲

for every 𝑠. □

Proposition 9.9.5. Suppose I is a 𝜅-filtered ∞-category. Then I-indexed colimits
in Gpd∞ commute with 𝜅-finite limits.

Proof. We want to show that the functor colimI : Fun(I,Gpd∞) → Gpd∞ pre-
serves 𝜅-finite limits. Since I is in particular filtered, we know from Corol-
lary 9.9.3 that colimI preserves finite limits. By Proposition 9.2.4 it therefore
suffices to show that it also preserves 𝜅-finite products. We thus consider a col-
lection of functors 𝜙𝑠 : I→ Gpd∞ indexed by a 𝜅-finite set 𝑆 ; we need to show
that the canonical map

colimI

∏
𝑠∈𝑆

𝜙𝑠 →
∏
𝑠∈𝑆

colimI 𝜙𝑠

is an equivalence. For this we apply the criterion of Corollary 7.7.4, which tells
us that it suffices to prove that given 𝑥𝑠 ∈ colimI 𝜙𝑠 for each 𝑠, the colimit of∏

𝑠∈𝑆 (𝜙𝑠)𝑥𝑠 is contractible. Translating this in terms of fibrations, we need to
show that given a collection of left fibrations E𝑠 → I indexed by 𝑠 ∈ 𝑆 such that
each E𝑠 is weakly contractible, the ∞-category I ×∏

𝑆 I

∏
𝑠∈𝑆 E𝑠 is also weakly

contractible. This follows from Proposition 9.9.4 since each E𝑠 is filtered by
Corollary 9.9.2. □
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Chapter 10

Presentable ∞-categories

10.1 Presentable ∞-categories

Definition 10.1.1. An ∞-category is (𝜅-)presentable if it is (𝜅-)accessible and
cocomplete.

Example 10.1.2. Cat∞ and PSh(C) for any small∞-category C are presentable.

We want to characterize the presentable ∞-categories as those of the form
Ind𝜅 C where C is a small ∞-category with 𝜅-finite colimits. For this we need
to know that∞-categories of this form are always presentable, i.e. that they are
cocomplete. This requires some preliminary discussion.

Proposition 10.1.3. Suppose C is a small idempotent-complete ∞-category. Then
the following are equivalent for a regular cardinal 𝜅:

(1) C has 𝜅-finite colimits.

(2) The inclusion C ↩→ PSh(C)𝜅 has a left adjoint.

Observation 10.1.4. Suppose 𝑖 : C ↩→ D is a fully faithful functor with left
adjoint 𝐿. Given a diagram 𝑝 : K→ C such that 𝑖◦𝑝 has a colimit in D, we claim
that 𝑝 also has a colimit in C, namely 𝐿(colimK 𝑖𝑝). Indeed, this is the colimit
of the diagram 𝐿𝑖𝑝 since the left adjoint 𝐿 preserves colimits, but 𝐿𝑖 ≃ idC since
𝑖 is fully faithful (Corollary 6.3.11), so 𝐿𝑖𝑝 ≃ 𝑝.

Proof of Proposition 10.1.3. Suppose first that C has 𝜅-finite colimits. We must
show that the copresheaf MapPSh(C) (𝜙, y(–)) on C is corepresentable for every
𝜙 ∈ PSh(C)𝜅 . By Proposition 9.4.7, there exists a functor 𝑝 : K → C with K

𝜅-finite so that 𝜙 is a retract of 𝜓 := colim y ◦ 𝑝. We first observe that

MapPSh(C) (𝜓, y(–)) ≃ limKop C(𝑝, –)

is corepresented by the colimit colim𝑝 inC. SinceC is by assumption idempotent-
complete, it then follows that the original copresheaf is corepresented by a re-
tract of colim𝑝.
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Now suppose (2) holds, so that the inclusion 𝑖 : C ↩→ PSh(C)𝜅 has a left
adjoint 𝐿. For a diagram 𝑝 : K → C with K 𝜅-finite, we know that 𝑖 ◦ 𝑝 has a
colimit in PSh(C)𝜅 , and so Observation 10.1.4 shows that 𝑝 has a colimit in C,
namely 𝐿(colim 𝑖𝑝). □

Observation 10.1.5. Suppose we have an adjunction 𝑓 ⊣ 𝑔 for functors

𝑓 : C ⇄ D : 𝑔

among small ∞-categories. Then we get an adjunction 𝑔op ⊣ 𝑓 op on opposite
∞-categories (Exercise 6.3) and so an adjunction 𝑓 op,∗ ⊣ 𝑔op,∗ on presheaves by
Lemma 6.3.8. Since adjoints are unique, this means that 𝑓 op,∗ is equivalent to
𝑔

op
! , so that we also have

𝑓
op

! ⊣ 𝑔
op
! .

Here both functors restrict to Ind𝜅 (–), and so we have an adjunction

Ind𝜅 𝑓 : Ind𝜅 C ⇄ Ind𝜅 D : Ind𝜅 𝑔

on 𝜅-filtered cocompletions.

Corollary 10.1.6. Suppose C is a small ∞-category with 𝜅-finite colimits. Then:

(1) The inclusion Ind𝜅 C ↩→ PSh(C) has a left adjoint.

(2) Ind𝜅 C is cocomplete.

(3) Ind𝜅 C is a 𝜅-presentable ∞-category.

Proof. By Proposition 10.1.3 the inclusion 𝑖 : C ↩→ PSh(C)𝜅 has a left adjoint 𝐿.
From Observation 10.1.5 we get an induced adjunction

Ind𝜅 𝐿 : PSh(C) ⇄ Ind𝜅 C : Ind𝜅 𝑖,

since PSh(C) ≃ Ind𝜅 PSh(C)𝜅 by Example 9.7.4 and Observation 9.6.7. Here we
need to identify Ind𝜅 𝑖 with the fully faithful inclusion of Ind𝜅 C in PSh(C). To
do so we observe that Ind𝜅 𝑖 is the unique 𝜅-filtered-colimit-preserving functor
extending the composite

C
𝑖−→ PSh(C)𝜅 ↩→ PSh(C),

which is the Yoneda embedding. The cocompleteness of Ind𝜅 C now follows
from Observation 10.1.4; since we know Ind𝜅 C is accessible, it is therefore pre-
sentable. □

Proposition 10.1.7. The following are equivalent for an ∞-category C:

(1) C is presentable.
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(2) C is accessible, and for every regular cardinal 𝜅 the full subcategory C𝜅 has 𝜅-finite
colimits.

(3) There exists a regular cardinal 𝜅 such that C is 𝜅-accessible and C𝜅 admits 𝜅-finite
colimits.

(4) C is equivalent to Ind𝜅 D where D is a small ∞-category with 𝜅-finite colimits.

(5) C is cocomplete and there exists a small full subcategory of 𝜅-compact objects for
some regular cardinal 𝜅 that generates C under small colimits.

Proof. (1) implies (2) since 𝜅-compact objects are always closed under any 𝜅-
finite colimits that exist by Proposition 9.4.2, while (2) clearly implies (3) and
this in turn implies (4) by Observation 9.6.7. If (4) holds, we know that C is
presentable by Corollary 10.1.6, so the first four conditions are equivalent. To
see they are also equivalent to (5), we first observe that this clearly holds when
C is 𝜅-presentable for some given 𝜅, since then every object is a small 𝜅-filtered
colimit of 𝜅-compact objects. Conversely, suppose (5) holds, with C0 ⊆ C the
full subcategory of𝜅-compact objects in question. Let C′ be the full subcategory
of C spanned by the colimits of 𝜅-finite diagrams in C0. Then C′ is a small ∞-
category and also consists of 𝜅-compact objects (Proposition 9.4.2). Moreover,
any object of C is the colimit of a small diagram in C0 and so of a 𝜅-filtered
diagram in C′, so that C is 𝜅-accessible by Corollary 9.6.6. □

Remark 10.1.8. We will see another important characterization of presentable
∞-categories, as the accessible localizations of presheaf ∞-categories, below in
§10.4.

Corollary 10.1.9. If C is a presentable ∞-category, then C admits small limits.

Proof. By Proposition 10.1.7 we have an equivalence C ≃ Ind𝜅 D, where D is a
small ∞-category with 𝜅-finite colimits. We can therefore identify Ind𝜅 D ⊂
PSh(D) as the full subcategory of presheaves that preserve 𝜅-finite limits by
Proposition 9.5.8. But this full subcategory is closed under limits in PSh(D),
since these are computed pointwise (Corollary 5.5.10) and limits commute. □

Observation 10.1.10. Suppose C is a 𝜅-presentable ∞-category and 𝜆 > 𝜅 is
another regular cardinal. Then C is also 𝜆-presentable, since it is generated
under small colimits by 𝜅-compact objects, which are also 𝜆-compact (as ev-
ery 𝜆-filtered ∞-category is also 𝜅-filtered). Note that this contrasts with the
situation for 𝜅-accessible ∞-categories (Proposition 9.7.13) where we needed a
strong set-theoretic assumption on 𝜆 for a 𝜅-accessible ∞-category to also be
𝜆-accessbile.

Lemma 10.1.11. Suppose C is a presentable ∞-category. Then for every object 𝑥 ∈ C
there exists some regular cardinal 𝜆 such that 𝑥 is 𝜆-compact.
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Proof. Let 𝜅 be a regular cardinal such that C is 𝜅-presentable. Then there is a
𝜅-filtered diagram 𝑝 : K→ C𝜅 whose colimit in C is 𝑥 . We can choose a regular
cardinal 𝜆 > 𝜅 such that K is 𝜆-finite. Since 𝜅-compact objects are in particular
𝜆-compact, and 𝜆-compact objects are closed under 𝜆-finite colimits, it follows
that 𝑥 is 𝜆-compact. □

Proposition 10.1.12. Suppose C is a 𝜅-presentable∞-category and D is a cocomplete
∞-category. Then a functor 𝐹 : C → D preserves colimits if and only if 𝐹 preserves
𝜅-filtered colimits and 𝐹 |C𝜅 : C𝜅 → D preserves 𝜅-finite colimits.

Proof. First suppose 𝐹 preserves colimits. Since C𝜅 is closed under 𝜅-finite col-
imits in C (Proposition 9.4.2), it follows that 𝐹 |C𝜅 preserves 𝜅-finite colimits.

Now we consider the less trivial direction. Since C is 𝜅-presentable, we have
C ≃ Ind𝜅 C𝜅 , and the inclusion 𝑖 : Ind𝜅 C𝜅 ↩→ PSh(C𝜅) has a left adjoint 𝐿 by
Corollary 10.1.6. Let 𝑓 := 𝐹 |C𝜅 ; since 𝐹 preserves 𝜅-filtered colimits, Propo-
sition 9.5.9 implies that 𝐹 is the left Kan extension of 𝑓 along the inclusion
C𝜅 → Ind𝜅 C𝜅 . Let

𝐺 := 𝑖!𝐹 : PSh(C𝜅) → D

be the further left Kan extension of 𝐹 ; then 𝐺 is also the left Kan extension
of 𝑓 along the Yoneda embedding, and so 𝐺 is colimit-preserving by Proposi-
tion 8.4.1. Since 𝑖∗ ⊣ 𝐿∗ we get a canonical natural transformation 𝛽 : 𝐺 → 𝐹 ◦ 𝐿
adjoint to the inverse of the counit 𝐹

∼−→ 𝑖∗𝐺 . We claim that if 𝛽 is an equiv-
alence, then 𝐹 preserves colimits: To see this, consider a diagram 𝑝 : K → C,
let 𝑞 : K⊲ → PSh(C𝜅) be a colimit cone for 𝑖 ◦ 𝑝; then we know that 𝐿(𝑞) is a
colimit cone for 𝑝. Since 𝐺 preserves colimits, it follows that 𝐺 (𝑞) ≃ 𝐹𝐿(𝑞) is a
colimit cone in D, so that 𝐹 indeed preserves the colimit of 𝑝.

It remains to show that 𝛽 is in fact an equivalence. Let E ⊆ PSh(C𝜅) denote
the full subcategory of presheaves 𝜙 such that 𝛽𝜙 : 𝐺 (𝜙) → 𝐹 (𝐿𝜙) is an equiv-
alence in D; we want to show that E is all of PSh(C𝜅). First observe that since
𝐹 preserves 𝜅-filtered colimits, E is closed under these. It therefore suffices to
show that E contains PSh(C𝜅)𝜅 , as this generates PSh(C𝜅) under such colimits.

By Proposition 10.1.3, the inclusion 𝑗 : C𝜅 ↩→ PSh(C𝜅)𝜅 has a left adjoint ℓ ,
so that 𝐿 ≃ Ind𝜅 ℓ by the proof of Corollary 10.1.6. From the construction of
this adjoint, we also see that 𝛽 restricts on PSh(C𝜅)𝜅 to the transformation

𝛾 : 𝑗! 𝑓 → 𝑓 ◦ ℓ

similarly adjoint to the inverse of the unit 𝑓
∼−→ 𝑗∗ 𝑗! 𝑓 . It thus suffices to check

that this is an equivalence. Let E′ ⊆ PSh(C𝜅)𝜅 be the full subcategory of objects
𝜙 such that 𝛾𝜙 is an equivalence. We first observe that 𝛾 is an equivalence on
objects in C𝜅 , so C𝜅 ⊆ E′. Moreover, the functor 𝑗! 𝑓 preserves 𝜅-finite colimit as
it is the restriction of the colimit-preserving functor 𝐺 to the full subcategory
PSh(C𝜅)𝜅 , which is closed under such colimits. Since 𝑓 by assumption preserves
𝜅-finite colimits, as does the left adjoint ℓ , it follows that E′ is closed under 𝜅-
finite colimits. It is also obviously closed under retracts. Therefore, as we know
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from Proposition 9.4.7 that every object in PSh(C𝜅)𝜅 is a retract of the colimit
of a 𝜅-finite diagram in C𝜅 , we can conclude that E′ is all of PSh(C𝜅)𝜅 . This
completes the proof. □

The condition of presentability is closed under many categorical construc-
tions. In particular, we have:

Proposition 10.1.13. If C is presentable and K is a small∞-category, then Fun(K,C)
is presentable.

Proof. Combine Theorem 9.7.14 with (the dual of ) Corollary 5.5.10. □

Proposition 10.1.14. Given a diagram 𝑝 : K→ Ĉat∞ of (large) ∞-categories where
𝑝 (𝑘) is a presentable ∞-category for every 𝑘 ∈ K and 𝑝 (𝑓 ) is a colimit-preserving
functor for every morphism 𝑓 in K, then:

(1) The ∞-category limK 𝑝 is presentable.

(2) A functor C→ limK 𝑝 where C is presentable, is colimit-preserving if and only if
the composite C→ 𝑝 (𝑘) preserves colimits for every 𝑘 ∈ K.

Proof. Combine Theorem 9.7.15 with (the dual of ) Corollary 5.5.15. □

10.2 The adjoint functor theorem

Our goal in this section is to prove the adjoint functor theorem for presentable
∞-categories, which gives very useful characterizations of when functors be-
tween presentable ∞-categories are left or right adjoints. This boils down to
identifying the representable presheaves (which is easy) and the corepresentable
copresheaves (which is hard) on a presentable ∞-category. We start with the
easy direction:

Proposition 10.2.1. If C is a presentable ∞-category, then a presheaf Φ : Cop →
Gpd∞ is representable if and only if Φ preserves small limits.

Observation 10.2.2. For a small∞-category C and a presheaf 𝜙 : Cop → Gpd∞,
the right Kan extension (yop)∗𝜙 : PSh(C)op → Gpd∞ is given by

(yop)∗𝜙 (𝜓 ) ≃ lim𝜓

C
𝜙 ≃ MapPSh(C) (𝜓, 𝜙) .

In other words, yop
∗ 𝜙 is the presheaf on PSh(C) represented by 𝜙 .

Proof of Proposition 10.2.1. Any representable presheaf preserves limits, so it suf-
fices to prove the converse. Choose 𝜅 so that C is 𝜅-presentable; then Φop is left
Kan extended from a functor 𝜙op : C𝜅 → Gpdop

∞ that preserves 𝜅-finite colimits
by Proposition 10.1.12. Let Φ′ : PSh(C𝜅)op → Gpd∞ be the right Kan extension
of Φ along the inclusion (Ind𝜅 C𝜅)op ↩→ PSh(C𝜅)op; then Φ′ is also the right Kan

191



extension of 𝜙 along yop and Φ ≃ Φ′ |Ind𝜅 C𝜅 . By Observation 10.2.2 we know
that Φ′ is the presheaf on PSh(C𝜅) represented by 𝜙 . But we also know from
Proposition 9.5.8 that 𝜙 lies in the full subcategory Ind𝜅 C𝜅 , since it preserves
𝜅-finite limits. Hence the restriction Φ of Φ′ is indeed the presheaf represented
by 𝜙 . □

Corollary 10.2.3 (Adjoint Functor Theorem, easy half ). Suppose C is a pre-
sentable ∞-category and D is a locally small ∞-category. Then a functor 𝐹 : C → D

is a left adjoint if and only if it preserves small colimits.

Proof. We know from Corollary 6.3.7 that 𝐹 is a left adjoint if and only if the
presheaf D(𝐹 (–), 𝑑) on C is representable for every 𝑑 ∈ D. By Proposition 10.2.1
this is equivalent to these presheaves preserving small limits, which happens for
all 𝑑 precisely if 𝐹 preserves colimits. □

The other half of the presentable adjoint functor theorem will follow from
the following characterization of corepresentable copresheaves:

Proposition 10.2.4. Suppose C is a presentable ∞-category. Then a copresheaf
Φ : C → Gpd∞ is corepresentable if and only if Φ is accessible and preserves small
limits.

For the proof we need an indirect criterion for the existence of initial ob-
jects1. To prove this we will in turn make use of the following somewhat non-
obvious criterion for initial objects:

Proposition 10.2.5. An object 𝑥 of an ∞-category C is inital if and only if 𝑥 is the
limit of the functor idC : C→ C.

Proof. Using Proposition 5.6.6, we see that it suffices to show that a cone C⊳ → C

that restricts to idC is terminal in C/id if and only if it takes −∞ → 𝑥 to id𝑥 .
We first check that this condition must hold for a terminal cone. Observe

that given two cones 𝛼, 𝛽 : C⊳ → C on idC, we get a morphism of cones 𝛼 → 𝛽

by taking the composite

[1] ★ C ≃ [0] ★ C⊳
id[0]★𝛽−−−−−→ C⊳ 𝛼−→ C;

on the cone points, the morphism 𝛼 (−∞) → 𝛽 (−∞) is the component of 𝛼 at
the object 𝛽 (−∞) ∈ C. In particular, from a cone 𝛼 we get a canonical endomor-
phism of cones 𝛼 → 𝛼 , given on the cone point by the image of −∞ → 𝛼 (−∞)
under 𝛼 . If 𝛼 is a limit cone, then this endomorphism must be equivalent to id𝛼 ,
since a limit cone is precisely a terminal object in the ∞-category of cones. In
particular its component at −∞ is an identity map, which means that 𝛼 takes
−∞ → 𝛼 (−∞) to id𝛼 (−∞) .

1I learned this from the paper [NRS20] of Nguyen, Raptis and Schrade on adjoint functor
theorems.
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Conversely, suppose 𝛾 is a cone such that 𝛾 (−∞ → 𝑥) ≃ id𝑥 ; we want to
prove that it is a terminal cone. Given a map of cones 𝜙 : 𝛽 → 𝛾 , we have a
natural commutative triangle

𝛽 (−∞) 𝑥

𝑥

𝜙−∞

𝛽𝑥

id𝑥

so that 𝜙−∞ ≃ 𝛽𝑥 . More precisely, if we define 𝜎 : C/id → C/𝑥 to take 𝛽 to
𝛽𝑥 : 𝛽 (−∞) → 𝑥 , then we have a commutative diagram

(C/id)/𝛾 C/𝑥

(C/id).

ev−∞

𝜎

Since C/id → C is a right fibration, the top horizontal functor here is an equiva-
lence by Lemma 3.3.10. Inverting it, 𝜎 thus provides a section 𝑠 of the forgetful
functor (C/id)/𝛾 → C/id. Now (the dual of ) Proposition 5.6.6 implies that this
exhibits 𝛾 as a terminal object precisely if 𝑠 takes 𝛾 to id𝛾 . But under the equiva-
lence ev−∞ this corresponds to the condition that 𝜎 takes 𝛾 to id𝑥 , which is true
by assumption. □

Corollary 10.2.6. Let C be a locally small ∞-category with small limits. Suppose
there exists a full subcategory 𝑖 : C0 ↩→ C such that C0 is small and for every object
𝑥 ∈ C there exists an object 𝑦 ∈ C0 such that C(𝑦, 𝑥) is non-empty. Then C has an
initial object.

Proof. We want to use Proposition 10.2.5 to conclude that C has an initial object.
Since C0 is small, the inclusion 𝑖 has a limit, so it suffices to show that 𝑖 is coinitial,
since then its limit is also the limit of idC by (the dual of ) Theorem 6.5.13.

We thus need to show that for every 𝑥 ∈ C, the ∞-category C0/𝑥 is weakly
contractible. Consider a functor 𝐹 : K→ C0/𝑥 where K is small. The composite

𝐹 ′ : K
𝐹−→ C0/𝑥 → C/𝑥 admits a limit cone 𝐹 ′ : K⊳ → C/𝑥 , since C is complete. By

assumption, there exists a map 𝑦 → 𝐹 ′(−∞) with 𝑦 ∈ C0. Composing 𝐹 ′ with
this, we therefore obtain a cone 𝐹 : K⊳ → C0/𝑥 extending 𝐹 . This implies that
C0/𝑥 is weakly contractible by Fact 9.3.9. □

Proof of Proposition 10.2.4. SinceC is presentable, all corepresentable copresheaves
on C preserve limits and are accessible, since we know from Lemma 10.1.11 that
for every object there is some 𝜅 for which it is 𝜅-compact. It remains to prove
the converse, for which we consider the left fibration 𝑝 : E→ C corresponding
to Φ; we want to prove that E has an initial object.
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The ∞-category E is locally small, and it has small limits by the dual of
Corollary 7.6.8. Choose 𝜅 so that C is 𝜅-presentable and Φ is 𝜅-accessible, and
define the full subcategory E𝜅 ⊆ E by the pullback

E𝜅 E

C𝜅 C;

𝑗

𝑞 𝑝

𝑖

we will apply the criterion of Corollary 10.2.6 to E𝜅 to conclude that E has an
initial object.

Given an object 𝑒 ∈ E, we must show that there exists a morphism from
some object of E𝜅 to 𝑒. We can write the image 𝑐 = 𝑝 (𝑒) as a 𝜅-filtered colimit

𝑐 ≃ colim𝑖∈I 𝑐𝑖

of 𝜅-compact objects 𝑐𝑖 . Since Φ is 𝜅-accessible, it follows that the object

𝑒 ∈ E𝑐 ≃ Φ(𝑐) ≃ colim𝑖∈I Φ(𝑐𝑖)

must lie in the image of Φ(𝑐𝑖) for some 𝑖. In terms of the fibration E, this means
that there exists a morphism 𝑒′ → 𝑒 lying over 𝑐𝑖 → 𝑐 where 𝑐𝑖 is 𝜅-compact;
thus 𝑒′ lies in E𝜅 , as required. □

Corollary 10.2.7 (Adjoint Functor Theorem, second half ). Suppose C and D

are presentable ∞-categories. Then a functor 𝐺 : C→ D is a right adjoint if and only
if it is accessible and preserves small limits.

Proof. We know 𝐺 is a right adjoint if and only if the copresheaf D(𝑑,𝐺 (–)) is
corepresentable for every 𝑑 ∈ D. By Proposition 10.2.4 this is true if and only
if this copresheaf is accessible and preserves limits for every 𝑑 ∈ D. The latter
condition holds if and only if 𝐺 preserves limits, so it remains to relate the two
accessibility conditions.

Suppose first that 𝐺 is accessible and preserves small limits. Then for a
given 𝑑 ∈ D we can find a regular cardinal 𝜅 so that 𝑑 is 𝜅-compact and 𝐺
is 𝜅-accessible; then D(𝑑,𝐺 (–)) is again 𝜅-accessible. Conversely, if these co-
presheaves are accessible for every 𝑑, first choose 𝜅 so that D is 𝜅-presentable.
Since D𝜅 is small, we can choose 𝜆 ≥ 𝜅 so that D(𝑑,𝐺 (–)) is 𝜆-accessible for all
𝑑 ∈ D𝜅 . Since the functors D(𝑑, –) with 𝑑 ∈ D𝜅 then jointly detect equivalences
in D, it follows that 𝐺 must be a 𝜆-accessible functor. □

10.3 Factorization systems

Definition 10.3.1. A factorization system on an ∞-category C consists of a pair
of wide subcategories (L,R) of C such that

194



▶ L ⊥ R, i.e. every morphism in L is left orthogonal to every morphism in
R,

▶ every morphism 𝑓 in C admits a factorization 𝑓 ≃ 𝑟 ℓ with 𝑟 in R and ℓ in
L.

Remark 10.3.2. Sometimes factorization systems are called orthogonal factor-
ization systems. This is probably Bourbaki’s fault.

Observation 10.3.3. If (L,R) is a factorization system on C, then (Rop,Lop) is
a factorization system on Cop.

Exercise 10.1. Show that for any ∞-category C, we have factorization systems (C≃,C)
and (C,C≃).

Example 10.3.4. Epimorphisms and monomorphisms form a factorization sys-
tem on Gpd∞ by Lemma 2.4.3 and Observation 2.2.8.

Example 10.3.5. Essentially surjective and fully faithful functors form a factor-
ization system on Cat∞ by Lemma 2.8.3 and Observation 2.8.5.

Example 10.3.6. Cofinal functors and right fibrations form a factorization sys-
tem on Cat∞ by Observation 6.5.5 and Corollary 6.5.6. Dually, coinitial functors
and left fibrations also form a factorization system.

Notation 10.3.7. Given an ∞-groupoid 𝑆 ⊆ C[1] of morphisms in an ∞-
category C, we write

▶ LO(𝑆) for the ∞-groupoid of morphisms that are left orthogonal to 𝑆 ,

▶ RO(𝑆) for the ∞-groupoid of morphisms that are right orthogonal to 𝑆 .

Proposition 10.3.8. Suppose (L,R) is a factorization system on an ∞-category C.
Then L = LO(R) and R = RO(L).

Proof. By assumption L ⊆ LO(R), so it remains to show that any morphism
𝑓 : 𝑋 → 𝑍 in LO(R) lies in L. We can factor 𝑓 as 𝑋

ℓ−→ 𝑌
𝑟−→ 𝑍 where ℓ is

in L and 𝑟 is in R. But then 𝑟 is also in LO(R) by Lemma 2.4.5 and so is left
orthogonal to itself. This means that 𝑟 is an equivalence by Exercise 2.11. □

Corollary 10.3.9. If (L,R) is a factorization system on C, then the morphisms in
both L and R are closed under retracts.

Proof. This follows from Proposition 10.3.8 together with Lemma 2.4.9 and its
dual. □

Remark 10.3.10. This definition of factorization systems is taken from [ABFJ22].
Note that it is a bit different from that given in [Lur09], which does not a pri-
ori ask for the classes of morphisms in a factorization system to be closed under
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composition (or to contain all equivalences), but instead demands closure un-
der retracts. These definitions agree since our definition also implies closure
under retracts (Corollary 10.3.9) while Lurie’s definition implies closure under
composition and equivalences by [Lur09, Corollary 5.2.8.13].

Proposition 10.3.11. Suppose (L,R) is a factorization system on an ∞-category C,
and consider a functor 𝑝 : E→ C.

(i) Suppose E admits 𝑝-cocartesian lifts of morphisms inL. LetL′ be the subcategory
of E containing the cocartesian morphisms over L, and let R′ be the subcategory
containing all morphisms that lie over R. Then (L′,R′) is a factorization system
on E.

(ii) Suppose E admits 𝑝-cartesian lifts of morphisms in R. Let R′′ be the subcategory
of E containing the cartesian morphisms over R, and let L′′ be the subcategory
containing all morphisms that lie over L. Then (L′′,R′′) is a factorization
system on E.

Proof. We prove (i); part (ii) is dual. To start, we show any morphism 𝑓 : 𝑥 → 𝑦

in E admits the required factorization: We can factor 𝑝 (𝑓 ) as 𝑝 (𝑥) ℓ−→ 𝑐
𝑟−→ 𝑝 (𝑦)

with ℓ in L and 𝑟 in R and choose a 𝑝-cocartesian lift ℓ : 𝑥 → ℓ!𝑥 of ℓ at 𝑥 . Then

𝑓 factors uniquely as 𝑥
ℓ−→ ℓ!𝑥

𝑟−→ 𝑦 where 𝑝 (𝑟 ) ≃ 𝑟 and so 𝑟 lies in R, as required.
Now we show that if ℓ : 𝑥 → 𝑦 is a cocartesian lift of ℓ : 𝑎 → 𝑏 in L and

𝑟 : 𝑧 → 𝑤 is a lift of 𝑟 : 𝑐 → 𝑑 in R, then ℓ is left orthogonal to 𝑟 . Consider the
commutative cube

E(𝑦, 𝑧) E(𝑦,𝑤)

C(𝑏, 𝑐) C(𝑏, 𝑑)

E(𝑥, 𝑧) E(𝑥,𝑤)

C(𝑎, 𝑐) C(𝑎, 𝑑)

Here the left and right faces are pullbacks since ℓ is 𝑝-cocartesian and the front
face is a pullback since ℓ is left orthogonal to 𝑟 . It follows that the back face is
also a pullback, as required. □

Example 10.3.12. Suppose 𝑝 : E → B is a cocartesian fibration. Then E has a
factorization system with left class the cocartesian morphisms and right class the
morphisms that lie over equivalences in B. Dually, if 𝑝 is a cartesian fibration,
then E has a factorization system with left class the morphisms that lie over
equivalences and right class the cartesian morphisms.

Proposition 10.3.13. Suppose (L,R) is a factorization system on an ∞-category
C, and let ArL(C) and ArR(C) denote the full subcategories of Ar(C) spanned by the
morphisms in L and R, respectively.
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(1) ev1 : ArR(C) → C is a cocartesian fibration; the cocartesian morphisms are those
whose image under ev0 lies in L.

(2) The inclusion ArR(C) ↩→ Ar(C) has a left adjoint (which takes an object of Ar(C)
to the R-part of its factorization).

(3) ev0 : ArL(C) → C is a cartesian fibration; the cartesian morphisms are those whose
image under ev1 lies in R.

(4) The inclusion ArL(C) ↩→ Ar(C) has a right adjoint (which takes an object of Ar(C)
to the L-part of its factorization).

Proof. We prove the first two points; the last two are dual. Consider a morphism
𝛼 in Ar(C), given by a commutative square

𝑥 𝑥 ′

𝑦 𝑦′

ℓ

𝑠 𝑡

𝑓

where ℓ lies in L. We claim that for any morphism 𝑟 : 𝑧 → 𝑤 in R, the com-
mutative square

Ar(C) (𝑡, 𝑟 ) Ar(C) (𝑠, 𝑟 )

C(𝑦′,𝑤) C(𝑦,𝑤)

𝛼∗

𝑓 ∗

is a pullback. Indeed, we have a commutative cube

Ar(C) (𝑡, 𝑟 ) Ar(C) (𝑠, 𝑟 )

C(𝑥 ′, 𝑧) C(𝑥, 𝑧)

C(𝑦′,𝑤) C(𝑦,𝑤)

C(𝑥 ′,𝑤) C(𝑥,𝑤),

where the left and right faces are pullbacks by Proposition 3.6.1. Moreover, the
front face is a pullback since ℓ is left orthogonal to 𝑟 , hence so is the back face.

If 𝑠 and 𝑡 lie in R, then this implies that 𝛼 is an ev1-cocartesian morphism in
ArR(C). To prove (1) it then remains to check that given 𝑠 : 𝑥 → 𝑦 and 𝑓 : 𝑦 → 𝑦′,
there exists a cocartesian lift of 𝑓 at 𝑠. But we know that the composite 𝑓 𝑠 factors
as 𝑟 ℓ with 𝑟 in R and ℓ in L, and the commutative square

𝑥 𝑥 ′

𝑦 𝑦′

ℓ

𝑠 𝑟

𝑓
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is then ev1-cocartesian.
To prove (2) we must show that for 𝑠 : 𝑥 → 𝑦 in Ar(C), the copresheaf

Ar(C) (𝑠, –) is corepresentable when restricted to ArR(C). Choose a factorization
of 𝑠 as 𝑟 ℓ with ℓ in L and 𝑡 in R; we have a commutative square

𝑥 𝑥 ′

𝑦 𝑦,

ℓ

𝑠 𝑡

and composition with this, viewed as a morphism in Ar(C), gives a pullback
square

ArR(C) (𝑡, 𝑟 ) Ar(C) (𝑠, 𝑟 )

C(𝑦,𝑤) C(𝑦,𝑤),

so that ArR(C) (𝑡, –) ≃ Ar(C) (𝑠, –) on ArR(C), as required. □

Proposition 10.3.14. The following are equivalent for a pair (L,R) of wide subcat-
egories of C:

(1) (L,R) is a factorization system on C.

(2) If FunL,R( [2],C) denotes the full subcategory of Fun( [2],C) on the composable
pairs 𝑋 ℓ−→ 𝑌

𝑟−→ 𝑍 with ℓ in L and 𝑟 in R, then

𝑑1 : FunL,R( [2],C) → Ar(C)

is an equivalence.

(3) If C[2]L,R denotes the core of FunL,R( [2],C), then

𝑑1 : C[2]L,R → C[1]

is an equivalence.

(4) For any morphism 𝑓 : 𝑋 → 𝑌 , the ∞-groupoid of factorizations 𝑓 ≃ 𝑟 ℓ , with ℓ in
L and 𝑟 in R, is contractible.

Warning 10.3.15. The statement of Proposition 10.3.14 is not quite the same
as that of [Lur09, Proposition 5.2.8.17], as we assume from the start that the
morphisms in L and R are closed under composition. As Lurie shows, this is in
fact a consequence of assumption (2), but it is unlikely to be implied by (3).
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Proof of Proposition 10.3.14. We first prove that (1) implies (2). Using Proposi-
tion 10.3.13 we can identify FunL,R( [2],C) with the full subcategory of the ∞-
category Arcoct(ArR(C)) spanned by commutative squares of the form

• •

• •;

L

R

under this equivalence the composition functor to Ar(C) corresponds to com-
position with ev1 : ArR(C) → C. We also know from Proposition 3.6.4 that we
have a pullback square

Arcoct(ArR(C)) Ar(C)

ArR(C) C,

where our full subcategory corresponds to the pullback of the full subcategory
Areq(C) ⊆ ArR(C). Since this is equivalent to C, the composite

FunL,R( [2],C) ↩→ Arcoct(ArR(C)) → Ar(C)
is an equivalence, as required.

(3) is immediate from (2), and (4) is equivalent to (3) since a morphism of
∞-groupoids is an equivalence if and only if its fibres are contractible. We are
therefore left with proving that (3) implies (1); for this we are required to show
that morphisms in L are left orthogonal to ones in R. Let us write C[2]L,• for
the sub-∞-groupoid C[2] consisting of composable pairs whose first component
lies in L, etc. We can then consider the sub-∞-groupoid SqL,R(C) of Map( [1] ×
[1],C) consisting of squares of the form

• •

• •
ℓ 𝑟

where ℓ lies in L and 𝑟 in R. Using the pushout decomposition of [1] × [1], this
decomposes as

SqL,R(C) ≃ C[2]L,• ×C[1] C[2]•,R.
We then need to prove that the map

C[3]L,•,R → SqL,R(C)

induced by the commutative square

C[3]L,•,R C[2]•,R

C[2]L,• C[1]

𝑑1

𝑑2 𝑑1

𝑑1
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is an equivalence.
We have a commutative diagram

C[3] C[2]

C[2] C[1]

C[3] C[2] .

𝑑2

𝑑1 𝑑1

𝑑1

𝑑2

𝑑1

𝑑1

Using assumption (3) and the Segal decompositions this restricts on sub-∞-
groupoids to

C[3]L,L,R C[2]L,•

C[2]L,R C[1]

C[3]L,R,R C[2]•,R.

∼

𝑑1 𝑑1

∼

𝑑2

∼

𝑑1

We therefore get an equivalence

C[4]L,L,R,R
∼−→ SqL,R(C)

after taking pullbacks, which moreover factors as

C[4]L,L,R,R
𝑑2−→ C[3]L,•,R → SqL,R(C),

where the first map is an equivalence by assumption (3) and the second is the map
we are interested in. It follows that this is indeed an equivalence, as required. □

Corollary 10.3.16. Suppose (L,R) is a factorization system on C. For an∞-category
K, let LK denote the wide subcategory of Fun(K,C) containing the natural transfor-
mations whose components lie in L, and define RK similarly. Then (LK,RK) is a
factorization system on Fun(K,C).

Proof. We use characterization (2) in Proposition 10.3.14. The composition func-
tor

FunLK,RK
( [2],CK) → Ar(CK)

is equivalent to the functor

Fun(K, FunL,R( [2],C)) → Fun(K, Ar(C))

given by composition in C, which is an equivalence by assumption. □
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10.4 Bousfield localizations

Definition 10.4.1. A Bousfield localization is a functor 𝐿 : C → C′ such that 𝐿
has a fully faithful right adjoint.

Remark 10.4.2. We saw in Corollary 6.3.11 that a Bousfield localization is in
particular a localization. Note that in [Lur09] what we call a Bousfield localiza-
tion is just called a localization.

Definition 10.4.3. A reflective subcategory of an ∞-category C is a fully faithful
functor C′ ↩→ C that has a left adjoint.

We can characterize Bousfield localizations 𝐿 ⊣ 𝑖 in terms of the endofunctor
Λ := 𝑖𝐿:

Proposition 10.4.4. Consider an endofunctor Λ : C → C of an ∞-category C, and
let

C
𝐿−→ C′

𝑖−→ C

be its unique factorization as an essentially surjective functor 𝐿 and a fully faithful
functor 𝑖 (Example 10.3.5). Then the following are equivalent:

(1) There exists an adjunction
𝐹 : C ⇄ D : 𝐺

where 𝐺 is fully faithful, and an equivalence Λ ≃ 𝐺𝐹 .

(2) 𝐿 is left adjoint to 𝑖 .

(3) There exists a natural transformation 𝛼 : idC → Λ such that for every object 𝑥 ∈ C,
the morphisms Λ(𝛼𝑥 ) and 𝛼Λ𝑥 are equivalences.

Proof. Clearly (2) implies (1). Conversely, given the adjunction 𝐹 ⊣ 𝐺 in (1), to
identify 𝐹 and𝐺 with 𝐿 and 𝑖 it suffices, since the factorization of Λ is unique, to
observe that 𝐹 is essentially surjective as the counit 𝐹𝐺𝑥 → 𝑥 is an equivalence
for all 𝑥 ∈ D.

To see that (2) implies (3), we take 𝛼 to be the unit of the adjunction 𝐿 ⊣ 𝑖.
Then the composites

𝐿𝑥
𝐿𝛼𝑥−−−→ 𝐿𝑖𝐿𝑥

𝜖𝐿𝑥−−→ 𝐿𝑥, 𝑖𝑦
𝛼𝑖𝑦−−→ 𝑖𝐿𝑖𝑦

𝑖𝜖𝑦−−→ 𝑖𝑦

are identities for 𝑥 ∈ C, 𝑦 ∈ C′, where 𝜖 : 𝐿𝑖 → id is the counit of the adjunction.
Since 𝜖 is an equivalence by Proposition 6.3.10, we conclude that 𝐿𝛼𝑥 and 𝛼𝑖𝑦
are equivalences for all 𝑥 ∈ C, 𝑦 ∈ C′. This applies in particular to 𝑦 = 𝐿𝑥 , giving
(3).

Finally, we show that (3) implies that 𝛼 is the unit of an adjunction 𝐿 ⊣ 𝑖.
We must show that the composite

C′(𝐿𝑥,𝑦) ∼−→ C(Λ𝑥, 𝑖𝑦)
𝛼∗𝑥−−→ C(𝑥, 𝑖𝑦)
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is an equivalence. Since 𝐿 is by assumption essentially surjective, we may assume
𝑦 ≃ 𝐿𝑧, so that we want to show that

C(Λ𝑥,Λ𝑧)
𝛼∗𝑥−−→ C(𝑥,Λ𝑧)

is an equivalence for all 𝑥, 𝑧 ∈ C. We claim that this map has both a left and
a right inverse: On the one hand, we have from Exercise 6.2 a commutative
square

C(𝑥,Λ𝑧) C(𝑥,Λ𝑧)

C(Λ𝑥,Λ2𝑧) C(𝑥,Λ2𝑧),

=

(Λ) 𝛼Λ𝑧,∗

𝛼∗𝑥

and so a commutative diagram

C(Λ𝑥,Λ𝑧) C(Λ𝑥,Λ2𝑧) C(𝑥,Λ𝑧)

C(𝑥,Λ𝑧) C(𝑥,Λ2𝑧) .

𝛼Λ𝑧,∗
∼

𝛼∗𝑥 𝛼∗𝑥

(Λ)

𝛼𝑧,∗

𝛼Λ𝑧,∗
∼

Since 𝛼Λ𝑧 is an equivalence, it follows that the composite

C(𝑥,Λ𝑧)
(Λ)
−−−→ C(Λ𝑥,Λ2𝑧)

(𝛼−1
Λ𝑧 )∗−−−−−→ C(Λ𝑥,Λ𝑧)

𝛼∗𝑥−−→ C(𝑥,Λ𝑧)

is the identity.For the other direction, consider the commutative diagram

C(Λ𝑥,Λ𝑧) C(𝑥,Λ𝑧)

C(Λ2𝑥,Λ2𝑧) C(Λ𝑥,Λ2𝑧)

C(Λ𝑥,Λ2𝑧)

𝛼∗𝑥

(Λ)

𝛼Λ𝑧,∗

(Λ)

𝛼∗Λ𝑥

(Λ𝛼𝑥 )∗
∼

Since Λ𝛼𝑥 and 𝛼Λ𝑧 are equivalences, the composite

C(Λ𝑥,Λ𝑧)
𝛼∗𝑥−−→ C(𝑥,Λ𝑧)

(Λ)
−−−→ C(Λ𝑥,Λ2𝑧)

(Λ𝛼𝑥 )−1,∗
−−−−−−−→ C(Λ2𝑥,Λ2𝑧)

𝛼∗Λ𝑥−−−→ C(Λ𝑥,Λ2𝑧)
(𝛼−1

Λ𝑧 )∗−−−−−→ C(Λ𝑥,Λ𝑧)

is again the identity. This provides the other inverse to 𝛼∗𝑥 , as required.2 □
2A posteriori, the two maps 𝛼Λ𝑥 and Λ𝛼𝑥 are actually the same, since by naturality we have

𝛼Λ𝑥 ◦ 𝛼𝑥 ≃ Λ(𝛼𝑥 ) ◦ 𝛼𝑥 .
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Definition 10.4.5. Let 𝑆 be a collection of morphisms in an∞-category C. We
say an object 𝑥 ∈ C is 𝑆-local if for every morphism 𝑓 : 𝑐 → 𝑑 in 𝑆 , the map

𝑓 ∗ : C(𝑑, 𝑥) → C(𝑐, 𝑥)

is an equivalence of∞-groupoids. Furthermore, we say that a morphism 𝑓 : 𝑐 →
𝑑 is an 𝑆-equivalence if for every 𝑆-local object 𝑥 , the map

𝑓 ∗ : C(𝑑, 𝑥) → C(𝑐, 𝑥)

is an equivalence.

Proposition 10.4.6. Suppose 𝐿 : C→ C′ is a Bousfield localization with fully faith-
ful right adjoint 𝑖 , and let 𝑆 be the collection of all morphisms in C that are taken to
equivalences by 𝐿. Then:

(1) An object of C is 𝑆-local if and only if it is in the image of 𝑖 .

(2) Every 𝑆-equivalence belongs to 𝑆 .

Proof. We first observe that every object in the image of 𝑖 is 𝑆-local, since for
𝑓 : 𝑐 → 𝑑 in 𝑆 and 𝑥 ∈ C′ we have a commutative square

C(𝑑, 𝑖𝑥) C′(𝐿𝑑, 𝑥)

C(𝑐, 𝑖𝑥) C′(𝐿𝑐, 𝑥)

∼

𝑓 ∗ (𝐿𝑓 )∗

∼

and 𝐿𝑓 is an equivalence. To prove (2), suppose 𝑓 : 𝑐 → 𝑑 is an 𝑆-equivalence.
Then the same commutative square shows that (𝐿𝑓 )∗ : C′(𝐿𝑑, 𝑥) → C′(𝐿𝑐, 𝑥) is
an equivalence for all 𝑥 ∈ C′. Thus 𝐿𝑓 is an equivalence in C′, i.e. 𝑓 is in 𝑆 , as
required.

It remains to show that the converse direction of (1). For any object 𝑦 ∈ C

we know from Proposition 10.4.4 that the unit map 𝜂𝑦 : 𝑦 → Λ𝑦 lies in 𝑆 , where
Λ := 𝑖𝐿. If 𝑦 is 𝑆-local, composition with 𝜂𝑦 thus gives an equivalence

C(Λ𝑦,𝑦) ∼−→ C(𝑦,𝑦).

Hence there exists a map 𝜙 : Λ𝑦 → 𝑦 so that 𝜙 ◦ 𝜂𝑦 ≃ id𝑦 ; note that then 𝐿(𝜙)
must be an equivalence, so 𝜙 ∈ 𝑆 . We also have a naturality square

Λ𝑦 𝑦

Λ2𝑦 Λ𝑦,

𝜙

𝜂Λ𝑦 𝜂𝑦

Λ𝜙

which tells us that 𝜂−1
Λ𝑦 (Λ𝜙)−1𝜂𝑦 ◦ 𝜙 ≃ id, so that 𝜙 has inverses on both sides.

Then 𝜙 is an equivalence (as is 𝜂𝑦), and in particular 𝑦 is in the image of Λ, as
required. □
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Observation 10.4.7. This proof shows that in the above situation the following
are equivalent for an object 𝑥 ∈ C:

(1) 𝑥 is 𝑆-local.

(2) 𝑥 is in the image of 𝑖.

(3) The unit map 𝜂𝑥 : 𝑥 → 𝑖𝐿𝑥 is an equivalence.

(4) The map
𝜂∗𝑥 : C(𝑖𝐿𝑥, 𝑥) → C(𝑥, 𝑥)

is an equivalence.

(5) 𝑥 is local with respect to the collection of all unit maps 𝑐 → 𝑖𝐿𝑐 with 𝑐 ∈ C.

10.5 Presentable factorization systems

Definition 10.5.1. A collection of morphisms 𝑆 in a cocomplete∞-category C

is saturated if

▶ 𝑆 is closed under colimits in Ar(C),

▶ 𝑆 contains all equivalences,

▶ 𝑆 is closed under composition.

Observation 10.5.2. Suppose 𝑆 is a saturated class. Then

▶ 𝑆 is closed under cobase change, since given a pushout

𝐴 𝐵

𝐴′ 𝐵′

with 𝐴→ 𝐴′ in 𝑆 , the map 𝐵 → 𝐵′ is also the pushout of

𝐴 𝐴 𝐵

𝐴′ 𝐴 𝐵

=

= =

in Ar(C). (This observation is taken from [ABFJ22].)

▶ 𝑆 is closed under retracts, since these are colimits of diagrams Idem →
Ar(C).

Proposition 10.5.3. For any collection of morphisms 𝑆 , LO(𝑆) is saturated.
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Proof. We know from Lemma 2.4.7 that LO(𝑆) is closed under cobase change
and from Lemma 2.4.5 that it is closed under composition, while it is obvious
that it contains all equivalences. Consider a diagram 𝑝 : K → Ar(C) that takes
values in C and has colimit 𝑓 : colim𝑘∈K𝐴𝑘 → colim𝑘∈K 𝐵𝑘 . If 𝑠 : 𝑋 → 𝑌 is in
𝑆 and each map 𝐴𝑘 → 𝐵𝑘 is in LO(𝑆), we want to show that the commutative
square

C(colim𝑘 𝐵𝑘 , 𝑋 ) C(colim𝑘 𝐴𝑘 , 𝑋 )

C(colim𝑘 𝐵𝑘 , 𝑌 ) C(colim𝑘 𝐴𝑘 , 𝑌 )

is a pullback. But this square is equivalent to

lim𝑘 C(𝐵𝑘 , 𝑋 ) lim𝑘 C(𝐴𝑘 , 𝑋 )

lim𝑘 C(𝐵𝑘 , 𝑌 ) lim𝑘 C(𝐴𝑘 , 𝑌 ),

which is a pullback since limits commute. □

Corollary 10.5.4. If (L,R) is a factorization system on C, then the class of morphisms
in L is saturated. □

Definition 10.5.5. The saturation 𝑆 of a collection of morphisms 𝑆 is the smallest
saturated class of morphisms that contains it. The saturation always exists (as-
suming the Axiom of Choice) since an arbitrary intersection of saturated classes
is again saturated. We say that a saturated class 𝑆 is of small generation if there is
a small set 𝑆0 such that 𝑆 = 𝑆0.

Exercise 10.2. Show that object𝑋 ∈ C is 𝑆-local if and only if𝑋 → ∗ is right orthogonal
to 𝑆 .

Theorem 10.5.6. Let C be a presentable ∞-category and 𝑆 a small collection of
morphisms in C. Then (𝑆,RO(𝑆)) is a factorization system on C.

Corollary 10.5.7. Let C be a presentable ∞-category and suppose 𝑆 is a saturated
class of small generation. Then 𝑆 satisfies the 3-for-2 property: if 𝑔𝑓 and 𝑓 lie in 𝑆
then 𝑔 lies in 𝑆 . □

Corollary 10.5.8. Let C be a presentable ∞-category and 𝑆 a small collection of
morphisms in C. Then LO(RO(𝑆)) is the saturation of 𝑆 .

Proof. We know that LO(RO(𝑆)) is a saturated class that contains 𝑆 . Hence
𝑆 ⊆ LO(RO(𝑆)). On the other hand, if 𝑓 : 𝑋 → 𝑍 is a morphism in LO(RO(𝑆))
then it factors as 𝑋

𝑔
−→ 𝑌

ℎ−→ 𝑍 where 𝑔 is in 𝑆 and ℎ is in RO(𝑆). But by
Lemma 2.4.5 the map ℎ is also in LO(RO(𝑆)). Thus ℎ is left orthogonal to
itself, and so is an equivalence (Exercise 2.11). Hence 𝑓 lies in 𝑆 , as required. □
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Exercise 10.3. Use Proposition 3.6.1 to show that if 𝑓 : 𝑥 → 𝑦 is a morphism in an
∞-category C such that 𝑥 and 𝑦 are both 𝜅-compact, then 𝑓 is 𝜅-compact as an object
of Ar(C).

Proposition 10.5.9. Suppose 𝑆 is a saturated class of morphisms in a presentable
∞-category C, and let Ar𝑆 (C) denote the full subcategory of Ar(C) spanned by the
morphisms in 𝑆 . Then 𝑆 is of small generation if and only if Ar𝑆 (C) is presentable.

Proof. We first observe that, since 𝑆 is saturated, the full subcategory Ar𝑆 (C) is
closed under colimits in Ar(C), so Ar𝑆 (C) is cocomplete and colimits therein are
computed in Ar(C).

Now suppose Ar𝑆 (C) is presentable, so that there exists a small set 𝑆0 of ob-
jects that generates Ar𝑆 (C) under small colimits. Since colimits are computed
in Ar(C), this means that every morphism in 𝑆 is a small colimit in Ar(C) of
elements of 𝑆0. Hence 𝑆 must clearly be the saturation of 𝑆0.

Now suppose 𝑆 is the saturation of a small subset 𝑆0. Choose a regular car-
dinal 𝜅 such that C is 𝜅-presentable and 𝑆0 consists of morphisms between 𝜅-
compact objects. Let E ⊆ Ar𝑆 (C) be the full subcategory spanned by morphisms
between𝜅-compact objects. Then E consists of𝜅-compact objects of Ar(C) (Ex-
ercise 10.3) and so of 𝜅-compact objects in Ar𝑆 (C). It then suffices to show that
every object of Ar𝑆 (C) is a 𝜅-filtered colimit of objects in E. To see this, we take
𝑇 to be the collection of morphisms in C that arise as such 𝜅-filtered colimits.
By assumption we have 𝑆0 ⊆ 𝑇 ⊆ 𝑆 , so it suffices to show that 𝑇 is saturated.

We note that E is closed under 𝜅-finite colimits in Ar(C), so that it follows
from Proposition 10.1.12 that 𝑇 is closed under colimits in Ar(C). We see as in
Observation 10.5.2 that 𝑇 is then closed under cobase change. Moreover, if ∅
is the initial object of C, then id∅ is contained in E, and hence 𝑇 contains all
equivalences, as they are obtained from id∅ by cobase change.

It thus only remains to show that 𝑇 is closed under composition. By Vari-
ant 9.6.2 the unique extension of the inclusion E ↩→ Ar(C) to Ind𝜅 (E) → Ar(C)
is fully faithful, and its image is precisely Ar𝑇 (C). Consider the full subcategory
Fun𝑇 ( [2],C) of Fun( [2],C) spanned by the composable pairs of morphisms in𝑇 .
Then

Fun𝑇 ( [2],C) ≃ Ar𝑇 (C) ×C Ar𝑇 (C),

which implies that this is a presentable∞-category. We claim that every object
of Fun𝑇 ( [2],C) is a 𝜅-filtered colimit of composable pairs of morphisms in E

— this follows from the proof that accessible ∞-categories are closed under
pullbacks in [Lur09, Proposition 5.4.6.6] (which we will not go into for now),
since the source and target functors to C take E to C𝜅 . Now the morphisms in E

are closed under composition since 𝑆 is, so since 𝑇 is closed under colimits this
implies that it is indeed closed under composition. □

Proposition 10.5.10. Let 𝑥 be an object of a cocomplete ∞-category C and consider
a diagram 𝑝 : K → C𝑥/. Let 𝑞 be the composite of 𝑝 with the forgetful functor to C.
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Then the colimit 𝑓 of 𝑝 in C𝑥/ fits in a pushout square

colimK 𝑥 𝑥

colimK 𝑞 𝑦.

𝑓

Proof. Let 𝑓 be defined by the given pushout; we want to show that this is the
colimit of 𝑝. For 𝑔 : 𝑥 → 𝑧 in C𝑥/ we have a commutative diagram

C𝑥/(𝑓 , 𝑔) C(𝑦, 𝑧) C(colimK 𝑞, 𝑧) limKop C(𝑞, 𝑧)

{𝑔} C(𝑥, 𝑧) C(colimK 𝑥, 𝑧) limKop C(𝑥, 𝑧),

𝑓 ∗

where all three squares are pullbacks. Since limits commute, this identifies
C𝑥/(𝑓 , 𝑔) as limKop C𝑥/(𝑝,𝑔), as required. □

Corollary 10.5.11. Let 𝑆 be a saturated class of morphisms in a cocomplete∞-category
C, and let C(𝑆 )

𝑥/ denote the full subcategory of C𝑥/ spanned by morphisms in 𝑆 . Then
C
(𝑆 )
𝑥/ is closed under colimits in C𝑥/, and so is in particular cocomplete.

Proof. Given a diagram in C
(𝑆 )
𝑥/ , its colimit in C𝑥/ is by Proposition 10.5.10 a

cobase change of its colimit in Ar(C). Since 𝑆 is saturated, it is by definition
closed under colimits in Ar(C), and it is also closed under cobase change by
Observation 10.5.2. □

Proposition 10.5.12. Suppose 𝑆 is a saturated class of morphisms in a presentable
∞-category C such that 𝑆 is of small generation. Then for every 𝑥 ∈ C there exists a
morphism 𝑓 : 𝑥 → 𝑥 ′ such that 𝑓 is in 𝑆 and 𝑥 ′ is 𝑆-local.

Proof. Let C(𝑆 )
𝑥/ denote the full subcategory of C𝑥/ spanned by morphisms in 𝑆 ;

this fits in a pullback square

C
(𝑆 )
𝑥/ Ar𝑆 (C)

{𝑥} C.

ev0

Here Ar𝑆 (C) is accessible by Proposition 10.5.9, and the two functors to C are
accessible. Hence the pullback C

(𝑆 )
𝑥/ is also an accessible ∞-category by The-

orem 9.7.15. Moreover, C(𝑆 )
𝑥/ is cocomplete by Corollary 10.5.11, so it is a pre-

sentable ∞-category. It therefore has limits by Corollary 10.1.9, and so in par-
ticular has a terminal object 𝑓 : 𝑥 → 𝑥 ′. We claim that then 𝑥 ′ is 𝑆-local.
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For 𝑠 : 𝑐 → 𝑑 in 𝑆 , we must show that

𝑠∗ : C(𝑑, 𝑥 ′) → C(𝑐, 𝑥 ′)

is an equivalence. This holds if and only if for 𝑔 : 𝑐 → 𝑥 ′, the fibre C𝑐/(𝑠, 𝑔) at 𝑔
is contractible. Now define 𝑠′ := 𝑔!𝑠 by the pushout

𝑐 𝑥 ′

𝑑 𝑦;

𝑔

𝑠 𝑠′

then C𝑐/(𝑠, 𝑔) ≃ C𝑥 ′/(𝑠′, id𝑥 ′), so it suffices to show that this is contractible. Since
we have an equivalence C𝑥 ′/ ≃ (C𝑥/)𝑓 /, we can identify this as the pullback

C𝑥 ′/(𝑠′, id𝑥 ′) C𝑥/(𝑠′ 𝑓 , 𝑓 )

{id} C𝑥/(𝑓 , 𝑓 ),

which is contractible by our assumption that 𝑓 is terminal in C
(𝑆 )
𝑥/ since 𝑠′ 𝑓 also

lies in 𝑆 . □

Proposition 10.5.13. Suppose 𝑆 is a saturated class in a presentable ∞-category C.
For 𝑥 ∈ C, let 𝑆𝑥 be the class of morphisms in C/𝑥 whose underlying morphism in C

lies in 𝑆 . Then 𝑆𝑥 is a saturated class in C/𝑥 . Moreover, if 𝑆 is of small generation, so
is 𝑆𝑥 .

Proof. It is clear that 𝑆𝑥 is saturated, since colimits in C/𝑥 are computed in C by
the dual of Corollary 5.6.11, and closure under composition and equivalences is
obvious. Moreover, Ar𝑆𝑥 (C/𝑥 ) is the pullback

Ar𝑆𝑥 (C/𝑥 ) Ar𝑆 (C)

Ar(C/𝑥 ) Ar(C),

where Ar𝑆 (C) is presentable by Proposition 10.5.9. Hence this is a pullback of
presentable∞-category along functors that preserve colimits, so that Ar𝑆𝑥 (C/𝑥 )
is also presentable by Proposition 10.1.14. Appealing to Proposition 10.5.9 again,
it follows that 𝑆𝑥 is of small generation. □

Corollary 10.5.14. Suppose 𝑆 is a saturated class of morphisms in a presentable ∞-
category C such that 𝑆 is of small generation. Then for every morphism 𝑓 : 𝑥 → 𝑦 there
exists a factorization of 𝑓 as 𝑥 𝑠−→ 𝑥 ′

𝑔
−→ 𝑦 such that 𝑠 is in 𝑆 and 𝑔 is right orthogonal

to 𝑆 .
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Proof. We can view 𝑓 as an object in C/𝑦 . Combining Proposition 10.5.13 and
Proposition 10.5.12, we see that there exists a morphism 𝑓

𝑠−→ 𝑔 in C/𝑦 with 𝑠 in
𝑆𝑦 and 𝑔 𝑆𝑦-local. This gives us a factorization 𝑓 ≃ 𝑔𝑠 with 𝑠 in 𝑆 , so it remains to
check that 𝑔 is right orthogonal to 𝑆 , i.e. that for 𝑠 : 𝑐 → 𝑑 in 𝑆 , the commutative
square

C(𝑑, 𝑥 ′) C(𝑑,𝑦)

C(𝑐, 𝑥 ′) C(𝑐,𝑦)

is a pullback. This is true if and only if the morphism on fibres at each ℎ : 𝑑 → 𝑦

is an equivalence, and we can identify this as the map

C/𝑦 (𝑝,𝑔) → C/𝑦 (𝑝𝑠, 𝑔)

given by composition with 𝑠. But since 𝑔 is 𝑆𝑦-local, this is indeed an equiva-
lence. □

Proof of Theorem 10.5.6. We know from Proposition 10.5.3 that the class of maps
that are left orthogonal to RO(𝑆) is saturated. Since it contains 𝑆 , it must also
contain the saturation 𝑆 , so this is left orthogonal to RO(𝑆). It only remains
to show that any morphism of C has the required factorization into these two
classes, which we did in Corollary 10.5.14. □

10.6 Accessible localizations

Proposition 10.6.1. Suppose C is a presentable3 ∞-category and 𝐿 : C → C′ is
a Bousfield localization with fully faithful right adjoint 𝑖; let 𝑆 be the collection of
morphisms inverted by 𝐿. Then the following are equivalent:

(1) C′ is an accessible ∞-category.

(2) C′ is a presentable ∞-category.

(3) 𝑖 is an accessible functor.

(4) There exists a small set 𝑆0 ⊆ 𝑆 such that every 𝑆0-local object is 𝑆-local.

(5) There exists a small set 𝑆0 such that C′ is the full subcategory of 𝑆0-local objects
in C.

3The statement also holds more generally for an accessible ∞-category, but for the proof
we then need to know that a right adjoint functor between accessible ∞-categories is always
accessible, which we have not proved.
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Exercise 10.4. Suppose we have an adjunction

𝐹 : C→ D : 𝐺

where C and D have 𝜅-filtered colimits and 𝐺 preserves these. Show that then 𝐹 pre-
serves 𝜅-compact objects.

Proof. We know from Observation 10.1.4 that in this situation C′ is automatically
cocomplete (with colimits computed by applying 𝐿 to colimits in C), so that C′
is accessible if and only if it is presentable. Moreover, if C′ is presentable, then
Corollary 10.2.7 implies that the right adjoint 𝑖 is accessible. Conversely, if 𝑖
is accessible then we can choose a regular cardinal 𝜅 so that C is 𝜅-presentable
and 𝑖 is 𝜅-accessible. It then follows that 𝐿 preserves 𝜅-compact objects. Given
𝑥 ∈ C′, we can write 𝑖𝑥 as a colimit of a 𝜅-filtered diagram 𝑝 of 𝜅-compact
objects in C. Then 𝐿𝑝 is a 𝜅-filtered diagram of 𝜅-compact objects in C′ whose
colimit is 𝐿𝑖𝑥 ≃ 𝑥 , and so C′ is also 𝜅-accessible. Moreover, if we let 𝑆0 be the set
of unit morphisms 𝑐 → 𝑖𝐿𝑐 with 𝑐 𝜅-compact, then an object 𝑥 that is local with
respect to 𝑆0 is local with respect to the unit maps 𝑐 → 𝑖𝐿𝑐 for every 𝑐 ∈ C, since
these are colimits of those for 𝑐 𝜅-compact. By Observation 10.4.7 this implies
that 𝑥 is 𝑆-local.

Next, if there exists a small set 𝑆0 that detects the local objects, then we can
choose a regular cardinal 𝜅 such that the source and target of every morphism
in 𝑆0 is 𝜅-compact. It follows that the full subcategory of C spanned by the 𝑆0-
local objects is closed under 𝜅-filtered colimits, i.e. that 𝑖 is 𝜅-accessible. Finally,
the last two points are equivalent by Proposition 10.4.6. □

Definition 10.6.2. If C is a presentable∞-category and 𝐿 : C→ C′ is a Bousfield
localization that satisfies the equivalent conditions of Proposition 10.6.1, we say
that 𝐿 is an accessible localization.

Corollary 10.6.3. An ∞-category C is presentable if and only if there exists a small
∞-category D and an accessible localization PSh(D) → C.

Proof. We know that PSh(D) is presentable (Example 10.1.2), so if such an ac-
cessible localization exists, then Proposition 10.6.1 implies that C is presentable.
Conversely, if C is presentable then Proposition 10.1.7 implies that C is equiv-
alent to Ind𝜅 D where D is a small ∞-category with 𝜅-finite colimits, and we
furthermore know from Corollary 10.1.6 that Ind𝜅 D is an accessible localization
of PSh(D). □

Definition 10.6.4. A class 𝑆 of morphisms in an ∞-category C is strongly satu-
rated if

(1) 𝑆 is saturated.

(2) 𝑆 has the 2-of-3 property: if any two of the three morphisms 𝑔𝑓 , 𝑓 and 𝑔
lies in 𝑆 , then so does the third.
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Exercise 10.5. Check that the class of all equivalences in C is strongly saturated.

Definition 10.6.5. If 𝑆 is a collection of morphisms in a cocomplete∞-category
C, then the strong saturation 𝑆 of 𝑆 is the smallest strongly saturated class that
contains 𝑆 ; this exists (assuming the Axiom of Choice) since any intersection
of strongly saturated classes is again strongly saturated. We say that a strongly
saturated class 𝑇 is of small generation if there exists a small set 𝑆 such that 𝑇 = 𝑆 .

Observation 10.6.6. Suppose 𝐹 : C→ D is a colimit-preserving functor, where
C is cocomplete. Then the class of morphisms in C that are sent to equivalences
by 𝐹 is strongly saturated. More generally, if 𝑆 is any strongly saturated class of
morphisms in D, then its preimage 𝐹 −1𝑆 is also strongly saturated.

Observation 10.6.7. Let 𝑆0 be a class of morphisms in C, and let 𝑆 be the class of
𝑆0-equivalences. Then 𝑆 is strongly saturated, since it is the intersection of the
strongly saturated classes of morphisms taken to equivalences by the colimit-
preserving functors C(–, 𝑥) : C→ Gpdop

∞ , for 𝑥 ∈ C 𝑆0-local.

We can now prove an existence result for accessible localizations: For any
strongly saturated class of small generation in an presentable∞-category, there
exists an accessible localization that inverts precisely this class of maps.

Proposition 10.6.8. Suppose 𝑆 is a small set of morphisms in a presentable ∞-
category C, and let C′ ⊆ C be the full subcategory of 𝑆-local objects. Then:

(1) For every 𝑥 ∈ C there exists a morphism 𝑓 : 𝑥 → 𝑥 ′ such that 𝑥 ′ is 𝑆-local and 𝑓
is an 𝑆-equivalence.

(2) The inclusion 𝑖 : C′ ↩→ C has a left adjoint 𝐿.

(3) The Bousfield localization 𝐿 ⊣ 𝑖 is accessible; in particular, the ∞-category C′ is
presentable.

(4) The following are equivalent for a morphism 𝑓 : 𝑥 → 𝑦 in C:

(i) 𝑓 is in the strong saturation 𝑆 .
(ii) 𝑓 is an 𝑆-equivalence.
(iii) 𝐿𝑓 is an equivalence.

Proof. The first point follows from Proposition 10.5.12, since the 𝑆-equivalences
are a (strongly) saturated class that contains 𝑆 , and hence contains the saturation
𝑆 . Then the map

C′(𝑥 ′, –) → C(𝑥, 𝑖 (–))

given by composition with 𝑓 is an equivalence, so that the copresheaf C(𝑥, 𝑖 (–))
is corepresentable. Since this is true for all 𝑥 ∈ C, we conclude that 𝑖 has a
left adjoint 𝐿, giving (2). That this is an accessible Bousfield localization now
follows from Proposition 10.6.1.
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We know from Observation 10.6.7 that the class of 𝑆-equivalences is a strongly
saturated class that contains 𝑆 , hence it contains 𝑆 , so that (i) implies (ii). Sim-
ilarly, the class of morphisms sent to equivalences by 𝐿 is strongly saturated by
Observation 10.6.6, and contains 𝑆 since for 𝑔 : 𝑐 → 𝑑 in 𝑆 and 𝑥 ∈ C′, we have
a commutative square

C(𝑑, 𝑖𝑥) C′(𝐿𝑑, 𝑥)

C(𝑐, 𝑖𝑥) C′(𝐿𝑐, 𝑥) .

∼

𝑔∗ (𝐿𝑔)∗

∼

Here the left vertical map is an equivalence since 𝑖𝑥 is 𝑆-local, hence 𝐿𝑓 must be
an equivalence in C′; thus (i) also implies (iii). Now consider the commutative
square

𝑥 𝑦

𝐿𝑥 𝐿𝑦.

𝑓

𝜂𝑥 𝜂𝑦

𝐿𝑓

Here we know from (1) that 𝜂𝑥 and 𝜂𝑦 lie in the (strong) saturation of 𝑆 . We
conclude that if 𝐿𝑓 is an equivalence, then 𝑓 must lie in the strong saturation 𝑆
and be an 𝑆-equivalence, since the 3-for-2 property holds for both. This proves
(4). □
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