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These are lecture notes from the course Algebraic Topology I given
at NTNU in the Fall semester of 2020. The notes are intended as a
supplement to the lectures and are not entirely self-contained — in
particular they contain almost no pictures. Please let me know if you
spot any errors!

Starred (⋆) sections consist of material that was not covered in
detail in the lectures, and only the statements of the main results are
relevant for the exam.
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1
Introduction

The basic idea of algebraic topology is to define and study algebraic
invariants of geometric objects. This means that given a topological
space X we want to find some algebraic structure F(X) (such as a
group, a vector space, or maybe just a number) such that if two spaces
X and X′ are homeomorphic then F(X) and F(X′) are isomorphic.
Such invariants give us a way to extract geometric information from
algebra: For example, suppose we have two spaces X and Y and
that we can compute the invariants F(X) and F(Y); if these algebraic
objects are not isomorphic, then we can conclude that the spaces X
and Y cannot be homeomorphic. This allows us to turn a topological
problem into an algebraic one — and if we’re lucky, this can be much
easier to solve.

Unsurprisingly, the more powerful an invariant is (i.e. the more
information about spaces it captures), the more difficult it tends to
be to compute it. In this course we will study a family of invariants,
the homology groups Hn(X), that strike a good balance between the
two desirable properties of computability and power: we will see that
they are computable for many spaces, yet contain enough information
that we can also give some non-trivial applications to topology.

It is hard to say precisely what homology groups “mean” in general,
and to give the precise definition we first need to set up quite a bit of
machinery. To get a first idea of what homology is about, let us take One often sees the statement that the

nth homology group of X “measures
the n-dimensional holes of X”, but it’s
not clear what this is really supposed to
mean, if anything.

a quick, informal look at homology in low dimensions.

1.1 Homology of Graphs

Consider a finite graph Γ, by which we mean (informally) a finite
collection of vertices V and of edges E, each of which links two vertices.
If we demand that each edge is equipped with an orientation, we can
describe the graph by two functions s, t : E→ V that take each edge e
to its source s(e) and target t(e).

A 1-dimensional chain on Γ is a formal linear combination ∑n
i=1 aiei,

ai ∈ Z, of edges ei, and a 0-dimensional chain is similarly a formal
linear combination of vertices. Let us write Ci(Γ) for the abelian
group of i-dimensional chains.

We can then define a homomorphism ∂ : C1(Γ)→ C0(Γ) by taking
the edge e to its (oriented) boundary t(e)− s(e). The 0-chains in the
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image of ∂ are called boundaries and form a subgroup B0(Γ) ⊆ C0(Γ).
A 1-chain σ is called a cycle if ∂σ = 0 — this means that the signed
boundaries of the edges that make up σ cancel out; in particular, if
we make loop on Γ by starting at a vertex and picking a sequence of
oriented edges that eventually gets back to the same vertex, we get a
cycle by taking the corresponding signed sum of edges. (Moreover,
any cycle is a linear combination of such “loops”.) The cycles form a
subgroup Z1(Γ) ⊆ C1(Γ).

The homology groups of Γ are then the abelian groups

H0(Γ) = C0(Γ)/B0(Γ),

H1(Γ) = Z1(Γ).

Although the groups Ci(Γ) obviously depend on the structure of Γ
as a graph, the homology groups turn out to be topological invariants:
they don’t depend on how we divide the graph Γ up into vertices and
edges. This is not hard to see: You can check

that if we pick an edge that connects two
different vertices and contract it away
(so its two end points are glued to a
single vertex) the homology groups do
not change. Repeating this, we can re-
duce any connected graph to one that
has a single vertex, with some number
of loops from that vertex to itself, and
two graphs are topologically the same
if and only if they reduce to the same
one-vertex graph under this process.

In H0(Γ) we identify two vertices when they are connected by an
edge, and more generally by a sequence of edges. In fact H0(Γ) is
a free abelian group whose rank is the number of components of
Γ, while H1(Γ) is a free abelian group whose rank is the number of
independent loops on Γ.

1.2 Homology of Surfaces

Now let’s try to do something similar one dimension up: Suppose
we have a surface Σ equipped with a triangulation, which roughly
speaking means we have divided the surface into triangles (which
only overlap along entire edges, so each edge meets exactly two
triangles). We then have a finite set F of (triangular) faces, a set E
of edges, and a set V of vertices, and define i-dimensional chains for
i = 0, 1, 2 to be Z-linear combinations of vertices, edges, and faces,
respectively; we write Ci(Σ) for the abelian group of i-dimensional
chains.

Suppose we additionally choose an orientation of each edge in E
and an ordering of the vertices of each triangle in F (independent of
the orientations of the edges). We can then define boundary maps

C2(Σ)
∂−→ C1(Σ)

∂−→ C0(Σ)

as follows:

• For an edge e ∈ E with vertices e0 and e1, ordered so that e points
from e0 to e1, we set

∂e = e1 − e0.

• For a triangle τ ∈ F, let τi (i = 0, 1, 2) denote the vertices of τ in
order, and if e is the edge of τ that connects the vertices τi and τj

we set

τij =

e, e goes from τi to τj,

−e, e goes from τj to τi.
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Then we have

∂τ = τ01 + τ12 + τ20.

These formulas extend uniquely to define ∂ on all chains by taking
linear combinations.

An i-dimensional chain is called a boundary if it is in the image of
∂ and a cycle if it is in the kernel of ∂; we write Bi(Σ), Zi(Σ) ⊆ Ci(Σ)
for the subgroups of boundaries and cycles (where we take Z0(Σ) =
C0(Σ) and B2(Σ) = 0). Note that we have

∂2 = 0,

since for τ ∈ F we get

∂2τ = ∂(τ01 + τ12 + τ20) = τ1 − τ0 + τ2 − τ1 + τ0 − τ2 = 0.

This means we have B1(Σ) ⊆ Z1(Σ).
The ith homology group of Σ is defined to be

Hi(Σ) = Zi(Σ)/Bi(Σ) =


C0(Σ)/B0(Σ), i = 0,

Z1(Σ)/B1(Σ), i = 1,

Z2(Σ), i = 2.

These abelian groups turn out to be topological invariants of Σ — they
do not depend on the choice of triangulation.

Suppose Σ is an orientable surface of genus g (i.e. a torus with g
holes). We will see that the homology groups of Σ can be described
as follows:

• H2(Σ) = Z2(Σ) is free abelian of rank 1. We can make a cycle by
adding up all the faces in the triangulation with signs chosen so
that each edge occurs twice with opposite signs, and hence the
boundary is 0; any cycle is then some multiple of this.

• H1(Σ) is a free abelian group of rank 2g. The generating cycles
can be taken to be those that “wrap around” each hole in the two
possible ways.

• H0(Σ) is a free abelian group of rank 1. When we quotient by
boundaries we again identify vertices that are connected by an
edge; since Σ is connected any two vertices is connected by a
sequence of edges, so we identify all vertices to a single class.

Example 1.2.1. Let’s confirm these claims in the case of the torus,
which we can build by taking a square and gluing opposite edges
together:
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If we add the diagonal, we get a triangulation of the torus with two
triangular faces, three edges and one vertex:

p pa

p pa

b b
d

U

L

Here we might have (depending on how we orient U and L)

∂U = b + a− d = ∂L,

∂a = ∂b = ∂d = p− p = 0.

Thus we have

• B0 = 0 and H0 = C0 is freely generated by p,

• Z1 = C1 and B1 is freely generated by (b + a− d), so

H1 = Z{a, b, d}/(d = a + b) ∼= Z2,

generated by the images of a and b.

• H2 = Z2 is freely generated by U − L.

Exercise 1.1. We computed the homology of the torus by thinking of it as
built from a square by gluing opposite edges, and triangulating this by cutting
it into two triangles along the diagonal. Here are two other (non-orientable!)
surfaces we can build by identifying opposite sides of a square, but now with
a twist in either one or both directions:

The corresponding spaces are the Klein bottle and the real projective plane
RP2, respectively. Triangulate these too by adding a diagonal and picking
orientations, and compute the homology groups. [You should find that
homology groups are not always free abelian groups.]

Exercise 1.2. The Euler characteristic of a triangulated surface is

χ := V − E + F.

(i) Show that χ = h0 − h1 + h2 where hi is the rank of the abelian group
Hi(Σ). Conclude that the Euler characteristic is a topological invariant.
[Hint: For abelian groups B ⊆ A the rank of A/B is given by rk A/B =

rk A− rk B. You will also need to write the boundary groups Bi(Σ) as
quotients.]

(ii) Conclude that for any way of covering the oriented surface of genus g
by polygons we must have

V − E + F = 2− 2g.

[Hint: Subdivide the polygons into triangles.]
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(iii)∗ In particular, any convex polyhedron must satisfy Euler’s formula,

V − E + F = 2.

Use this to classify the Platonic solids. [Hint: first observe that we have
pF = 2E = qV if the faces have p edges and q edges meet at each vertex,
and show that 1

p + 1
q > 1

2 ; since p and q are integers ≥ 3 there are not
many possibilities.]

If we tried to extend our discussion so far to higher dimensions, we
would end up with the theory of simplicial homology, which attaches ho-
mology groups to simplicial complexes — these are topological spaces
that are decomposed into simplices, which are higher-dimensional
analogues of triangles. This was historically the first version of ho-
mology, and goes back all the way to the original work of Poincaré
around 1900. However, although it gives a correct way to compute
homology groups that are topological invariants, it is painful to work
with when we want to set up the theory and prove its basic formal
properties. Therefore, we will instead begin by looking at the slightly
more abstract, but better-behaved definition of singular homology (first
introduced in this form by Eilenberg in 1943), which gives homology
groups for a topological space without having to choose any extra
structure. Thereafter, we will look at simplicial homology and its
generalization to cellular homology groups, and see that these give a
powerful combinatorial tool for computing the (singular) homology
groups.





2
Some Basic Topology and Category Theory

In this chapter we first briefly review the basic notions of topological
spaces and continuous maps in §2.1. When we define homology
groups we will see that any continuous map f : X → Y induces a
homomorphism of homology groups that is compatible with composi-
tion; it is convenient to phrase this in terms of categories: the homology
groups will be functors from the category of topological spaces to that
of abelian groups. We introduce categories and functors in §2.2 —
they give a useful language that we will use throughout the course.
As a first example of this, we review some basic constructions of
topological spaces (products, coproducts, and quotients) and discuss
how they can be interpreted categorically in §2.3–2.4.

We will eventually prove that the homology groups of a space are
invariant in a stronger sense than we have considered so far: they
will agree not just when the spaces X and X′ are homeomorphic,
but also whenever X and X′ can be continuously deformed into
each other — more precisely, when they are homotopy equivalent; we
review the basic notions of homotopies and homotopy equivalences
in §2.5. We then introduce a first, simple (but important) example of
an algebraic invariant in §2.6: the set π0X of path-components of a
space X. Finally, we briefly review another important invariant, the
fundamental group of a space, in §2.7.

2.1 Topological Spaces

Definition 2.1.1. A topological space is a set X equipped with a collec-
tion TX of subsets of X, such that

• ∅, X ∈ TX ,

• if Ui ∈ TX for all i ∈ I (where I can be any set) then
⋃

i∈I Ui ∈ TX ,

• if U, U′ ∈ TX then U ∩U′ ∈ TX .

The collection TX is called a topology on X and the elements of TX are
the open subsets of X. We often just say that X is a topological space
without mentioning TX explicitly.

Terminology 2.1.2.

• A subset U ⊆ X is called closed if X \U is open.
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• If x is a point of X, an open neighbourhood of x is an open subset U
of X such that x ∈ U. (A neighbourhood of x is a subset S ⊆ X that
contains an open neighbourhood of x.)

Examples 2.1.3.

(i) A subset U of Rn is open if for every x ∈ U there exists ϵ > 0
such that when |x− y| < ϵ we have y ∈ U (i.e. U contains the
open ball of radius ϵ around x).

(ii) Similarly, if (X, d) is a metric space, a subset U ⊆ X is open if
for every x ∈ U there exists ϵ > 0 such that U contains the open
ball of radius ϵ around x.

(iii) We can equip any set X with the discrete topology where all sets
are open (TX is the power set of X).

(iv) We can equip any set X with the coarse (or indiscrete) topology,
where TX := {∅, X}.

Definition 2.1.4. Let X be a topological space and Y ⊆ X any subset.
Then the subspace topology on Y is given by

TY := {V ⊆ Y : V = U ∩Y for some U ∈ TX}.

Example 2.1.5. The n-sphere Sn can be defined as the subset

Sn :=

{
x ∈ Rn+1 : ∑

i
x2

i = 1

}

equipped with the subspace topology from Rn+1.

Definition 2.1.6. Let X and Y be topological spaces. A continuous map
from X to Y is a function f : X → Y such that if U ⊆ Y is open, then
f−1U ⊆ X is also open.

Exercise 2.1. Let X be a topological space and S a set. Show that if we equip S
with the discrete topology then any function S→ X is continuous, and if we
equip S with the indiscrete topology then any function X → S is continuous.

Solution. First suppose S has the discrete topology. Given any function
f : S→ X, for U ⊆ X open we have that f−1(U) is open since all subsets of
S are open, i.e. f is continuous.

Now suppose S has the indiscrete topology. Given any function f : X → S,
we have f−1(S) = X and f−1(∅) = ∅ which are both open subsets of X for
any topology thereon. Since these are the only open subsets of S, this means
f is continuous.

Exercise 2.2. Let (X, dX) and (Y, dY) be metric spaces. Show that a function
f : X → Y is continuous if and only if for every x ∈ X and every ϵ > 0 there
exists δ > 0 such that if dX(x, x′) < δ then dY( f (x), f (x′)) < ϵ. (Note that δ

may depend on x.)

Solution. For a point p in a metric space (M, d), let’s write

BM
ϵ (p) := {q ∈ M : d(p, q) < ϵ}
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for the open ball of radius ϵ around p in M. Then we can reformulate the
statement we want to prove as: f is continuous if and only if for all x ∈ X
and ϵ > 0 there exists δ > 0 such that

f (BX
δ (x)) ⊆ BY

ϵ ( f (x)),

or equivalently BX
δ (x) ⊆ BY

ϵ ( f (x)). (This says precisely that if dX(x, x′) < δ

then dY( f (x), f (x′)) < ϵ.)
First suppose f is continuous. Given x ∈ X and ϵ > 0, the subset

BY
ϵ ( f (x)) ⊆ Y is open in Y, and so f−1BY

ϵ ( f (x)) is an open subset of X
containing x. This means by definition that there exists some δ > 0 such that
BX

δ (x) ⊆ f−1BY
ϵ ( f (x)), as required.

Now we prove the converse. Let U be an open subset of Y, then we
must show that f−1U is open in X. This means that we most show that
for any x ∈ f−1U there exists some δ > 0 such that BX

δ (x) ⊆ f−1U, or
f (BX

δ (x)) ⊆ U. Since U is open in Y, we may choose ϵ > 0 such that
BY

ϵ ( f (x)) ⊆ U; our assumption on f then says there exists some δ > 0 such
that f (BX

δ (x)) ⊆ BY
ϵ ( f (x)). It follows that BX

δ (x) ⊆ f−1U, which shows that
f−1U is open.

2.2 Categories

Definition 2.2.1. A category C consists of

• a collection obC of objects (we write x ∈ C for x ∈ obC)

• for any objects x, y ∈ C a set C(x, y) or HomC(x, y) of morphisms
from x to y (we write f : x → y for f ∈ C(x, y)),

• for every x ∈ C, an identity morphism idx ∈ C(x, x),

• for all x, y, z ∈ C a composition law

C(x, y)× C(y, z)→ C(x, z)

(we write g f or g ◦ f for the composite of f : x → y, g : y→ z)

such that:

• composition is associative: for f : x → y, g : y → z, h : z → w, we
have

h(g f ) = (hg) f ,

• the identity is a unit for composition: for f : x → y, we have

f (idx) = f = (idy) f .

Examples 2.2.2. Most objects in mathematics form categories. For
example:

• There is a category Set whose objects are sets and whose mor-
phisms are functions.

• There is a category Grp whose objects are groups and whose mor-
phisms are homomorphisms.

• There is a category Ab whose objects are abelian groups and whose
morphisms are homomorphisms.
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• There is a category VectR whose objects are vector spaces over R

and whose morphisms are linear maps.

Definition 2.2.3. The category Top has topological spaces as objects Composition is just composition of func-
tions: if f : X → Y and g : Y → Z are
continuous, so is g f : for U ⊆ Z open,
(g f )−1(U) = g−1( f−1U) is also open.

and continuous maps as morphisms.

Notation 2.2.4. If X and Y are topological spaces we’ll also write
C(X, Y) for the set Top(X, Y) or HomTop(X, Y) of continuous maps
from X to Y.

Definition 2.2.5. Let C be a category. A morphism f : x → y in C is an
isomorphism if there exists a morphism g : y → x such that g f = idx

and f g = idy.

Definition 2.2.6. A continuous map f : X → Y is a homeomorphism
if it’s an isomorphism in Top, i.e. if there exists a continous map
g : Y → X such that g f = idX and f g = idY.

Warning 2.2.7. In other words, f is a homeomorphism if it is a But a continous bijection f : X → Y is a
homeomorphism if X is compact and Y
is Hausdorff.

continous bijection such that f−1 is also continous. However, it is in
general not enough for f to be a continuous bijection.

Exercise 2.3. Prove the following basic properties of isomorphisms in a
category C:

(i) If f : x → y and g : y→ z are isomorphisms, so is g f : x → z.

(ii) Given f : x → y, if there exist g, h : y→ x such that

g f = idx, f h = idy,

then f is an isomorphism.

(iii) If f is an isomorphism, its inverse is unique.

(iv) If F : C → D is a functor and f : x → y is an isomorphism in C, then
F( f ) is an isomorphism in D.

(v) Being isomorphic is an equivalence relation on objects of C.

Solution.

(i) If f−1 : y→ x and g−1 : z→ y are inverses of f and g, respectively, then
we have

(g f )( f−1g−1) = g( f f−1)g−1 = gidyg−1 = gg−1 = idz,

( f−1g−1)(g f ) = f−1(g−1g) f = f−1idy f = f−1 f = idx,

which shows that f−1g−1 is inverse to g f .

(ii) It suffices to show that we also have f g = idy, since then g is an inverse
of f . Now observe that we have

f g = ( f g)( f h) = f (g f )h = f idxh = f h = idy.

(iii) If g and h are two inverses of f , then it follows from (ii) that g = h.

(iv) Let f−1 : y→ x be the inverse of f . Then

F( f )F( f−1) = F( f f−1) = F(idy) = idF(y)

and similarly F( f−1)F( f ) = idF(x), so that F( f−1) is inverse to F( f ).

(v) Let us write x ∼= y for “there exists an isomorphism f : x → y”. Then

• x ∼= x since idx is always an isomorphism,
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• x ∼= y implies y ∼= x since if f : x → y is an isomorphism, so is
f−1 : y→ x,

• x ∼= y and y ∼= z implies x ∼= z since if f : x → y and g : y → z are
isomorphism, part (i) shows that g f : x → z is an isomorphism.

An important concept in category theory is that of a “universal
property” of an object. We will not make this precise here, but the
basic idea is that a universal property characterizes an object uniquely
up to isomorphism in terms of the ways of mapping other objects
into (or out of) the given object. Here is an example:

Exercise 2.4. Let X be a topological space and U ⊆ X a subset. Show that
the subspace topology on U has the following universal property: if T is a
topological space, then a continuous map from T to U is a map of sets T → U
such that the composite T → U ↪→ X is continuous.

A category is itself a sort of algebraic structure, and as with any
such there is a corresponding notion of structure-preserving mor-
phisms (or “homomorphism of categories”), which are called functors:

Definition 2.2.8. Let C, D be categories. A functor F : C → D is the
assignment of

• an object F(c) ∈ D to every c ∈ C,

• a morphism F( f ) : F(c)→ F(c′) to every f : c→ c′ in C,

compatibly with composition and identities, i.e.

• F(g f ) = F(g)F( f ) for all composable morphisms f , g in C,

• F(idc) = idF(c) for all c ∈ C.

Example 2.2.9. Let C be a category and c an object of C. We can
define a functor C(c, –) : C→ Set by sending x ∈ C to the set C(c, x) of
morphisms c→ x, with f : x → y going to the map C(c, x)→ C(c, y)
given by composition with f .

Exercise 2.5. Show that there is a functor Top → Set that takes a topolog-
ical space to its underlying set (the “forgetful” functor) and two functors
Set→ Top that take a set to itself equipped with the discrete and indiscrete
topologies, respectively.

2.3 Products and Coproducts

Category theory allows us to view constructions involving different
sorts of mathematical objects as instances of a single concept valid
in any category. Let us look at a first example of this, the categorical
definition of products:

Definition 2.3.1. A product of two objects x, y in a category C is another

object p together with morphisms (“projections”) p
ξ−→ x, p

η−→ y such
that given any object q and morphisms f : q → x, g : q → y there
exists a unique morphism ϕ : q → p such that f = ξϕ, g = ηϕ. In
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other words, there exists a unique morphism such that the following
diagram commutes:

q

p x

y

∃!
f

g ξ

η

We often denote the product of x and y by x× y.

The product of two objects, if it exists, is defined by a universal
property; it follows that it is “unique up to unique isomorphism” in
the following sense:

Lemma 2.3.2. Let x, y be objects of a category C. Suppose (p, ξ : p →
x, η : p→ y) and (p′, ξ ′ : p′ → x, η′ : p′ → y) are two products of x and y.
Then there exists a unique isomorphism between p and p′ that is compatible
with the projections to x and y.

Proof. Since p is a product, there is a unique morphism ϕ : p′ → p
such that ξϕ = ξ ′ and ηϕ = η′. And since p′ is a product, there is also
a unique morphism ψ : p → p′ such that ξ ′ψ = ξ and η′ψ = η. The
composite ϕψ : p → p satisifes ξϕψ = ξ ′ψ = ξ and ηϕψ = η — this
implies ϕψ = idp since there is a unique morphism with this property.
Similarly we have ψϕ = idp′ , which means that ϕ is an isomorphism
with inverse ψ.

Example 2.3.3. In the category Set, the product of two sets X, Y is the
usual cartesian product, i.e.

X×Y := {(x, y) : x ∈ X, y ∈ Y}, (2.1)

with its projections to X and Y. To see this, we must check the
universal property holds: given functions f : S→ X, g : S→ Y there
is indeed a unique function ϕ : S → X × Y that agrees with f and g
on the projections, as this forces ϕ(s) = ( f (s), g(s)).

Remark 2.3.4. Thinking of constructions such as products in terms
of universal properties can often make things simpler for us: For
instance, I might prefer to define the ordered pair (x, y) as the set
{{a}, {a, b}} while you might prefer to define it as {b, {a, b}}. Then
for sets X, Y our definitions (2.1) of their cartesian product would
not be equal, but by Lemma 2.3.2 we know that there is a canonical
isomorphism between them. Moreover, in practice we will never use
any property of the cartesian product other than those that follow
from its universal property, which means we don’t really need to
choose a preferred product at all (provided we know at least one
choice does exist).

Exercise 2.6. Let x, y, z be objects of a category C. Show that there is a
canonical isomorphism

x× (y× z) ∼= (x× y)× z,

provided these products exist.



algebraic topology i 19

Exercise 2.7. Show that the cartesian product of (abelian) groups is also the
categorical product in Grp and Ab, when equipped with the canonical group
structure.

Solution. If H and K are groups, the canonical group structure on H × K
has multiplication (h, k)(h′, k′) = (hh′, kk′), so the two projections πH : H ×
K → H, πK : H × K → K are clearly group homomorphisms. Given group
homomorphisms η : G → H and κ : G → K, we must show there exists
a unique group homomorphism ϕ : G → H × K such that πHϕ = η and
πKϕ = κ. We already know there exists a unique morphism of sets ϕ with
these properties, given by ϕ(g) = (η(g), κ(g)), so we only need to check this
is in fact a group homomorphism. Indeed, we have

ϕ(g)ϕ(g′) = (η(g), κ(g))(η(g′), κ(g′)) = (η(g)η(g′), κ(g)κ(g′)) = (η(gg′), κ(gg′)) = ϕ(gg′)

since η and κ are homomorphisms. The same is true if the groups happen to
be abelian.

Now we consider products of topological spaces:

Definition 2.3.5. Let X and Y be topological spaces. The product
topology on X×Y has as open sets those W ⊆ X×Y such that for all The product topology is the weakest

(smallest) topology on X×Y such that
all products of open sets are open.

w = (x, y) ∈ W there exist U ⊆ X, V ⊆ Y open with x ∈ U, y ∈ V
and U ×V ⊆W.

Example 2.3.6. The usual topology on Rn is the product topology on
R× · · · ×R. (A subset can be covered with open balls if and only if
it can be covered with open cubes.)

Proposition 2.3.7. Let X and Y be topological spaces. The projections
X × Y → X, Y are continuous for the product topology, and they exhibit
X×Y as the categorical product in Top.

Proof. Let ξ : X × Y → X, η : X × Y → Y denote the projections. To
see that ξ is continuous we must check that for U ⊆ X open the
preimage ξ−1U = U × Y is open, which is clear from the definition
since it is a product of open sets; similarly, η is continuous. Given
functions f : T → X, g : T → Y, we know there exists a unique
function ϕ : T → X × Y such that ξϕ = f , ηϕ = g. To see that the
product topology makes X × Y the categorical product, we must
show that if f and g are continuous then the unique map ϕ is also
continuous. For U ⊆ X, V ⊆ Y open we have that

ϕ−1(U ×V) = ϕ−1(U ×Y ∩ X×V)

= ϕ−1(U ×Y) ∩ ϕ−1(X×V)

= ϕ−1ξ−1(U) ∩ ϕ−1η−1(V)

= f−1(U) ∩ g−1(V).

If f and g are continuous it follows that ϕ−1(U×V) is open in T. Any
open set W in X× Y is by definition an (infinite) union of products
of open sets in X and Y, so ϕ−1(W) is a union of preimages of such,
and hence also open.

Exercise 2.8 (∗). Given a set I and a collection xi (i ∈ I) of objects of a category
C, their product (if it exists) is an object ∏i∈I xi together with projections
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πi : ∏i∈I xi → xi satisfying the following universal property: given an object
y and morphisms fi : y → xi for i ∈ I, there exists a unique morphism
f : y→ ∏i∈I xi such that πi f = fi. Show that I-indexed cartesian products are
categorical products in the category Set, and also in the categories Ab,Grp,Top
when equipped with canonical (abelian) group structures and topologies.
(What is an I-indexed product when I is empty?)

We can often “dualize” categorical notions by reversing the arrows.
For the product, this gives the dual notion of coproducts:

Definition 2.3.8. Suppose x, y are objects of a category C. The coprod-
uct of x and y, if it exists, is an object x⨿ y together with morphisms
(“inclusions”) i : x → x⨿ y, j : y→ x⨿ y such that given morphisms
f : x → z, g : y → z there exists a unique morphism ϕ : x ⨿ y → z
such that ϕ ◦ i = f , ϕ ◦ j = g.

Example 2.3.9. The coproduct in Set of two sets I, J is the disjoint
union I ⨿ J. Though it’s intuitively obvious what this means, in
the usual formulation of set theory we have to define this in some
awkward way to ensure I and J don’t have elements in common, for
example as I × {0} ∪ J× {1}, with the inclusion I, J ↪→ I ⨿ J given by
i ∈ I 7→ (i, 0) and j ∈ J 7→ (j, 1), respectively.

Exercise 2.9. Show that the coproduct in Top of topological spaces X, Y is the
disjoint union X ⨿Y of sets, with a subset U ⊆ X ⨿Y defined to be open if
and only if U ∩ X is open in X and U ∩Y is open in Y.

Example 2.3.10. The coproduct in Ab of two abelian groups A, B is the
cartesian product A× B with its canonical (componentwise) group
structure, often denote A⊕ B when thought of as the coproduct, with
the inclusions A, B ↪→ A× B given by

a ∈ A 7→ (a, 0), b ∈ B 7→ (0, b).

A homomorphism ϕ : A× B→ C is indeed uniquely determined by
its restrictions along these inclusions, since we have

ϕ(a, b) = ϕ((a, 0) + (0, b)) = ϕ(a, 0) + ϕ(0, b).

Exercise 2.10 (∗). What is the coproduct of two copies of Z in Grp?

Exercise 2.11 (∗). Define I-indexed coproducts for any indexing set I, as in
Exercise 2.8. Describe these in the categories Set and Top.

Exercise 2.12 (∗). If C is a category, we define the opposite category Cop to be
the category with the same objects as C, but with the direction of morphisms
reversed — thus HomCop (x, y) := HomC(y, x). Check that a coproduct in C

is the same thing as a product in Cop.

Exercise 2.13 (∗). Suppose a topological space X can be written as a union of
subsets Xi (i ∈ I) such that the subsets Xi are open and disjoint. Show that
X ∼= ⨿i∈I Xi (i.e. the topology on X is the coproduct topology).

2.4 Quotients

In this section we will review quotients of topological spaces. We start
by briefly recalling quotients of sets by (equivalence) relations:
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Definition 2.4.1. Let I be a set. A relation on I is a subset R ⊆ I × I;
for i, j ∈ I we write i ∼R j to mean “(i, j) ∈ R”. An equivalence relation
is a relation R that is

• reflexive: i ∼R i for all i ∈ R,

• symmetric: i ∼R j implies j ∼R i,

• transitive: i ∼R j and j ∼R k implies i ∼R k.

If R is an equivalence relation, then the equivalence class of i ∈ I is
the set [i]R := {i′ ∈ I : i′ ∼R i}. We write I/∼R or I/R for the set of
equivalence classes; then there is a canonical function I → I/R that
takes i to [i]R.

Definition 2.4.2. If R is a relation on I, the equivalence relation
generated by R is the smallest equivalence relation R ⊆ I × I such that
R ⊆ R. In this case we write I/∼R or I/R for I/R. More explicitly, i ∼R j if and only if

there exists a finite sequence i0, . . . , in ∈
I (n ≥ 0) such that i = i0, j = in and
either it−1 ∼R it or it ∼R it−1 for each
t = 1, . . . , n.

Exercise 2.14. Suppose R is a relation on a set I. Show that the quotient
I/R = I/R together with the quotient map

π : I → I/R, π(i) = [i]R

has the following universal property: any function f : I → J for which i ∼R j
implies f (i) = f (j) factors uniquely through π,

I I/R

J.

π

f
∃! f

Now let’s upgrade this to topology:

Definition 2.4.3. Let X be a topological space, and let R be a relation
on its underlying set. Write π for the quotient map X → X/R = X/R.
The quotient topology on X/R has as open sets those U ⊆ X/R such
that π−1U is open in X.

Lemma 2.4.4. Let X be a topological space and R a relation on X. A
continuous map f : X → Y such that

x ∼R x′ =⇒ f (x) = f (x′)

factors uniquely through π, i.e. there exists a unique continuous map
f̄ : X/R→ Y such that f̄ π = f .

Proof. By Exercise 2.14 there exists a unique function of sets f̄ : X/R→
Y such that f̄ π = f , given by f̄ ([x]R) = f (x). Now we observe that
the quotient topology has the property that f is continuous if and
only if f̄ is continuous: if U ⊆ Y is open, then f̄−1U is by definition
open in X/R if and only if π−1 f̄−1U = f−1U is open in X.

Examples 2.4.5. Many examples of topological spaces can be defined
as quotients:

(i) Let S be the square {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1} with the
subspace topology from R2. Then we can define the torus by
identifying opposite sides of the square, i.e. taking the quotient

S/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y)).



22 rune haugseng

(ii) We can define the real n-dimensional projective space RPn by
identifying antipodal points on the n-sphere, i.e. as the quotient
Sn/(x ∼ −x).

(iii) Similarly, we can define the complex n-dimensional projective
space CPn by viewing S2n+1 as a subset of Cn+1 and forming
the quotient S2n+1/(x ∼ λx : λ ∈ C, |λ| = 1).

(iv) Let Dn := {x ∈ Rn : |x| ≤ 1} denote the n-dimensional disc
of radius 1, and ∂Dn := {x : |x| = 1} its boundary. Then
Sn ∼= Dn/∂Dn.

Exercise 2.15. Let Dn := {x ∈ Rn : |x| ≤ 1} be the closed n-disk and

∂Dn := Sn−1 := {x ∈ Rn : |x| = 1}

be the (n− 1)-sphere, both equipped with the subspace topology from Rn.

(i) Find explicit homeomorphisms D1/∂D1 ∼= S1 and D2/∂D2 ∼= S2. [Feel
free to use that these are compact Hausdorff spaces, so that a continuous
bijection is necessarily a homeomorphism.]

(ii) Show that the following three descriptions of the torus are homeomor-
phic:

T1 := {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y))

T2 := S1 × S1

T3 := {(R + r cos θ) cos ϕ, (R + r cos θ) sin ϕ, r sin θ)} ⊆ R3 (R > r)

(iii)∗ Find an explicit homeomorphism Dn/∂Dn ∼= Sn.

2.5 Homotopies and Homotopy Equivalences

Definition 2.5.1. A homotopy between two continuous maps f , g : X →
Y is a continuous map H : X × [0, 1] → Y such that H(–, 0) = f and
H(–, 1) = g.

Remark 2.5.2. There are two useful ways to think of a homotopy
H: On the one hand H specifies for each point x ∈ X a path
H(x, –) : [0, 1]→ Y from f (x) to g(x), continuous in the point x. On
the other hand, H specifies a continuous map Ht := H(–, t) : X → Y
for t ∈ [0, 1], and this depends continuously on t; thus H is a continu-
ous deformation of f into g.

Definition 2.5.3. Two continuous maps f , g : X → Y are homotopic if
there exists a homotopy from f to g.

Exercise 2.16. Show that being homotopic is an equivalence relation on the
set C(X, Y) of continuous maps X → Y.

Definition 2.5.4. The homotopy category hTop has topological spaces
as objects, and morphism sets are given by

hTop(X, Y) := Top(X, Y)/homotopy.

Exercise 2.17. Prove that hTop is a well-defined category, with composition
and identities induced from Top (so that there is a functor Top→ hTop that
takes each continuous map to its equivalence class). What does Exercise 2.3
then tell you about homotopy equivalences?
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Definition 2.5.5. A continuous map f : X → Y is a homotopy equiv-
alence if its image in hTop is an isomorphism. More explicitly, this
means there exists a continuous map g : Y → X (a homotopy inverse) A homotopy inverse, if it exists, is not

unique, but it is uniquely determined
up to homotopy (its homotopy class is
unique).

and homotopies between g f and idX and between f g and idY.

Let’s consider a more intuitive special case of homotopy equiva-
lences:

Definition 2.5.6. Let X be a topological space and A ⊆ X a subspace;
let i : A ↪→ X denote the inclusion.

• A is a retract of X if there exists a continuous map ρ : X → A (a
retraction) such that ρi = idA, i.e. ρ(a) = a for all a ∈ A.

• A is a deformation retract if in addition there exists a homotopy H
between idX and iρ : X → X.

• A is a strong deformation retract if the homotopy H can be chosen so
that it fixes A, i.e. H(a, t) = a for a ∈ A, t ∈ [0, 1].

If A is a deformation retract, then i : A ↪→ X is a homotopy equiva-
lence with homotopy inverse ρ.

Definition 2.5.7. A topological space X is called contractible if it is
homotopy-equivalent to a point.

Example 2.5.8. The discs Dn are contractible: Define H : Dn× [0, 1]→
Dn by H(x, t) = t · x; then H is a homotopy between the constant
map with value (0, . . . , 0) (at t = 0) and idDn (at t = 1). This shows
that the point (0, . . . , 0) is a (strong) deformation retract of Dn.

Exercise 2.18. Let S be a set. Show that:

(i) if S is equipped with the discrete topology then S is contractible if and
only if S has exactly one element,

(ii) if S is equipped with the indiscrete topology then S is contractible if
and only if S is non-empty.

[Hint: Prove that with the discrete topology the only continuous paths are
the constant ones, while any path is continuous for the indiscrete topology.]

Exercise 2.19 (∗∗). (A topological proof that S1 is not contractible.) View S1

as {z ∈ C : |z| = 1} and let π : R→ S1 be the continuous map x 7→ eix. We
say that a continuous map f : S1 → S1 lifts to R if there exists f̄ : S1 → R

such that f = π f̄ .

(i) Show that if g : S1 → S1 lifts to R and f : S1 → S1 is another continuous
map such that f (x)/g(x) ̸= −1 for all x ∈ S1 then f also lifts to R.

(ii) Let c1 : S1 → S1 be the constant map with value 1, and suppose f is
homotopic to c1, via a homotopy H : S1× [0, 1]→ S1. Since S1× [0, 1] is
compact, we can choose δ > 0 such if |x− y| < δ then |H(x)− H(y)| <
2 for all x, y ∈ S1 × [0, 1] (viewed as a subset of R3). Use this to show
that f lifts to R.

(iii) Use (ii) to prove that S1 is not contractible (i.e. idS1 is not homotopic to
a constant map).
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2.6 Path-Connectedness and π0

Let X be a topological space. We define a relation on (the underlying
set of) X by defining x ∼ y for x, y ∈ X to mean that there exists a
path in X from x to y, i.e. a continuous map p : [0, 1] → X such that
p(0) = x, p(1) = y. This is an equivalence relation:

• x ∼ x since we always have the constant path with value x,

• x ∼ y implies y ∼ x: If p is a path from x to y we can define a new
path p′ by doing p in reverse, i.e. p′(t) = p(1− t); then p′ is a path
from y to x,

• x ∼ y and y ∼ z implies x ∼ z: If we have paths p1 from x to y and
p2 from y to z we can define a new path p by first doing p1 and
then doing p2,

p(t) =

p1(2t), t ≤ 1
2 ,

p2(2t− 1), t ≥ 1
2 .

Then p is a path from x to z.

Definition 2.6.1. The set π0X of path-components of X is the set of
equivalence classes for this equivalence relation,

π0X := X/∼.

The path-components of X are the subspaces corresponding to the
equivalence classes in π0X. The space X is called path-connected if it Thus two points lie in the same path-

component if and only if they are con-
nected by a path.

has a single path-component, i.e. any two points of X are connected
by a path.

The following exercise shows that π0X is a homotopy-invariant of
the space X:

Exercise 2.20. Let X and Y be topological spaces.

(i) Show that any continuous map f : X → Y induces a function π0 f : π0X →
π0Y, and that this makes π0 a functor Top→ Set.

(ii) Show that if f , g : X → Y are homotopic, then π0 f = π0g. [Hence π0 is
a functor hTop→ Set.]

(iii) Show that if f : X → Y is a homotopy equivalence, then π0 f is an
isomorphism.

We would like to think of π0X as the “set of disjoint pieces” of X
in the strong sense that X is a coproduct of its path-components, i.e.

X ∼= ⨿
α∈π0X

Xα, (2.2)

with the coproduct topology. Unfortunately, this is false for an arbi-
trary topological space X for two reasons: Recall that X is connected if it cannot be

written as a union U ∪V where U, V ⊆
X are subsets that are both open and
closed.

• If X = A⨿ B with the coproduct topology, then the subspaces A
and B are both open and closed in X. But there exist spaces that
are connected, but not path-connected. Such a space X cannot be An example is the “topologist’s sine

curve” which is connected, but has two
path-components.

decomposed as a coproduct, even though π0X has more than one
element.
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• If X = ⨿i∈I Xi (with the coproduct topology) where the Xi are For example, if we view Q as a subspace
of R then each point is a connected com-
ponent (and a path-component) but is
not open, since any open set around it
in R contains other rational numbers.

(path-)connected then the Xi are the connected components of X
(meaning the maximal connected subsets), and they are both open
and closed subsets of X. But the connected components of a space
need not be open.

However, such issues only arise for rather pathological (or at least
non-geometric) examples of topological spaces; for any of the spaces
we want to consider in this course, we will have a decomposition as
in (2.2). We can ensure this by imposing the following condition on
our spaces:

Definition 2.6.2. A topological space X is locally path-connected if
for any open subset U ⊆ X and any point x ∈ U there exists a
path-connected open subset V ⊆ U with x ∈ V.

Proposition 2.6.3. Suppose X is a locally path-connected space. Then the
path-components of X are open subsets of X.

Proof. Let x be a point of X and P ⊆ X the path-component con-
taining x. To show that P is open it suffices to show that P contains
an open neighbourhood of any point y ∈ P. But since X is locally
path-connected there exists some open neighbourhood U of y that
is path-connected. It follows that all points in U lie in the same
path-component as y, i.e. U ⊆ P.

If we combine this observation with Exercise 2.13 we get the co-
product decomposition (2.2):

Corollary 2.6.4. If X is locally path-connected, then

X ∼= ⨿
α∈π0X

Xα,

where Xα is the path-component of X corresponding to α ∈ π0X and the
right-hand side is equipped with the coproduct topology.

2.7 (⋆) The Fundamental Group

Definition 2.7.1. A pointed space is a pair (X, x) with X a topological
space and x ∈ X a point. We have a category Top∗ of pointed spaces,
with Top∗((X, x), (Y, y)) being the set of continous maps f : X → Y
such that f (x) = y. A pointed homotopy of such maps (X, x)→ (Y, y)
is a homotopy H : X× [0, 1]→ Y such that H(x, t) = y for all t. Then
we define hTop∗ to be the category of pointed topological spaces and
pointed continuous maps modulo pointed homotopy.

Definition 2.7.2. The fundamental group of a pointed space (X, x) is
the set

π1(X, x) := hTop∗((S
1, ∗), (X, x))

of pointed homotopy classes of loops in X that start and end at x.
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The fundamental group has a group structure given by concatena-
tion of loops, and any pointed continuous map f : (X, x)→ (Y, y) in-
duces a group homomorphism π1 f : π1(X, x)→ π1(Y, y). Moreover,
any two (pointed) homotopic maps give the same homomorphism on
π1, so we can view the fundamental group as a functor

π1 : hTop∗ → Grp.

We also have higher homotopy groups, which can be defined as

πn(X, x) := hTop∗((S
n, ∗), (X, x)).

For n ≥ 2 these have canonical abelian group structures, and can be
viewed as functors πn : hTop∗ → Ab.

The homotopy groups are fairly simple to define and contain a
lot of information about the space X, but they are also notoriously
difficult to compute. (For example, it is essentially impossible to
compute all the homotopy groups of seemingly simple spaces like
S2.) You can learn more about homotopy groups in the sequel to this
course.



3
Simplices and Singular Homology

In this chapter we define the singular homology groups of a topolog-
ical space, and look at a few simple consequences of the definition.
There are three steps in the definition: we first define the sets of
singular simplices in a topological space in §3.1, and then linearize
these to get the abelian groups of singular chains in §3.2, before we de-
fine boundaries, cycles, and finally homology groups in §3.3. In §3.4
we check that changing signs in homology corresponds to changing
the orientation of a path. We then formalize the structure we have
obtained in terms of chain complexes in §3.5, where we also show that
singular homology is a functor. In the two lowest dimensions we
can relate homology groups to structures we already know: in §3.6
we show that H0X is the free abelian group on the set π0X of path
components, while in §3.7 we prove that (for X path-connected) H1X
is the abelianization of the fundamental group π1X. Finally, in §3.8
we prove that homology takes arbitrary disjoint unions of spaces to
the corresponding direct sums of abelian groups.

3.1 Singular Simplices

Simplices are higher-dimensional versions of triangles, tetrahedra, etc.
Here is a convenient definition of the n-simplex as a topological space:

Definition 3.1.1. The n-simplex is the topological space

∆n := {(x0, . . . , xn) ∈ Rn+1 : xi ≥ 0, ∑
i

xi = 1},

with the subspace topology from Rn+1.

We see that

• ∆0 is a point,

• ∆1 is a closed interval,

• ∆2 is a (filled) equilateral triangle,

• ∆3 is a (solid) regular tetrahedron.

Terminology 3.1.2. The ith vertex of ∆n is the point ei := (0, . . . , 1, . . . , 0)
with 1 in the ith coordinate.
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Remark 3.1.3. Any point in ∆n can be written uniquely as ∑n
i=0 aiei

with ai non-negative real numbers that satisfy ∑ ai = 1. Given
any function f : {0, . . . , n} → Rk we can define a continuous map
F : ∆n → Rk by F(∑n

i=0 aiei) = ∑n
i=0 ai f (i).

Definition 3.1.4. The ith face of ∆n is the subset ∂i∆n of points
(x0, . . . , xn) where xi = 0. This is homeomorphic to ∆n−1 via the ith
face map di : ∆n−1 → ∆n, which takes (x0, . . . , xn) to (x0, . . . , xi−1, 0, xi, . . . , xn).

Note 3.1.5. The ith face is the face that does not contain the ith vertex,
or the face opposite the ith vertex.

Lemma 3.1.6 (The simplicial identity). For 0 ≤ j < i ≤ n + 1 the two
maps didj and djdi−1 : ∆n−1 → ∆n+1 are the same.

Proof. The map djdi−1 first inserts 0 in the (i− 1)th coordinate and
then in the jth coordinate. But as j < i these end up as the ith and jth
coordinates in ∆n+1 — in other words, djdi−1 is the inclusion of the
subset {(x0, . . . , xn) : xi = xj = 0}. The same holds for didj, where
the coordinates don’t shift, since i > j.

We are going to study a topological space by looking at all the
ways we can map simplices into it:

Definition 3.1.7. A singular n-simplex in a topological space X is a
continuous map ∆n → X. We write Singn(X) for the set of singular n-
simplices in X (in the notation we used above, this is HomTop(∆n, X)).

Thus Sing0(X) is the set of maps ∗ → X, which is just the under-
lying set of points X, while Sing1(X) is the set of continuous paths
[0, 1] ∼= ∆1 → X in X.

Definition 3.1.8. The face map di : ∆n−1 → ∆n induces a map

∂i : Singn(X)→ Singn−1(X)

by composition, i.e.

∂iσ := σ ◦ di : ∆n−1 ↪→ ∆n → X

is given by restricting σ to the ith face of ∆n. We call ∂iσ the ith face
of the simplex σ.

Remarks 3.1.9.

(i) The name singular simplices is historical, and refers to the fact
that we allow arbitrary continuous maps from simplices, not just
ones that are nice embeddings (so they can have singularities).

(ii) We can think of the sets Singn(X) together with the face maps ∂i

as giving a combinatorial description of the space X, recording
all the information we can get by “probing” X with simplices.
In fact, if X is a reasonably nice space, we can recover X up to
homotopy equivalence from this data (but we will not see that
in this course).
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(iii) The set Singn(X) is typically huge, even if the space X is simple
— for example Singn(∆

1) is uncountable for all n ≥ 0. (Thus this
is not a combinatorial description that is useful for calculations,
but one that is good for developing the theory.)

(iv) It is possible to use other families of “test spaces” than simplices Cubes are nicer than simplices in some
ways (in particular, the product of two
cubes is a cube, while the product of two
simplices is not a simplex, which will
annoy us later), but more complicated
in others.

to set up homology, without changing the resulting homology
groups. For example, it is possible to use n-dimensional cubes.

3.2 Free Abelian Groups and Singular Chains

The next step will be to linearize the sets Singn(X). This will allow us
to define the boundary of a singular n-simplex as a linear combination
of (n− 1)-simplices. For example, for σ : ∆1 ∼= [0, 1] → X, we have
∂0σ = σ(1), ∂1σ = σ(0), and we want the boundary of σ to be

∂σ = ∂0σ− ∂1σ = σ(1)− σ(0),

so that ∂σ = 0 if σ is a closed loop. For this to make sense we will
consider formal linear combinations of simplices, i.e. we take the free
abelian group on the set Singn(X). Let’s review this notion:

Definition 3.2.1. Let S be a set. Somewhat informally, the free abelian
group ZS is the set of formal linear combinations a1s1 + · · ·+ ansn,
with ai ∈ Z, si ∈ S, with addition defined in the obvious way. More
formally we can take ZS to be the set of functions f : S → Z such
that f (s) = 0 for all but finitely many s, with addition defined
componentwise (i.e. ( f + g)(s) = f (s) + g(s)). If we write es for
the function S → Z given by es(s) = 1, es(s′) = 0 for s′ ̸= s, then
any such function f can be written uniquely as a linear combination
f = ∑s∈S f (s)es (which we can view as a finite linear combination
since f (s) is non-zero for only finitely many s).

Remark 3.2.2. The free abelian group ZS has the following universal
property: If A is an abelian group and ϕ : S → A is any function,
then there exists a unique homomorphism ZS → A extending ϕ

(necessarily given by ∑ aisi 7→ ∑ aiϕ(si)).

Definition 3.2.3. If A is an abelian group and T ⊆ A is a subset,
we say that A is freely generated by T if the induced homomorphism
ZT → A is an isomorphism. (In other words, every a in A can be
written as a Z-linear combination of elements of T in a unique way.)
We say A has rank r if it is freely generated by a set of size r.

Example 3.2.4. The abelian group Zr is freely generated by the “stan-
dard basis vectors” ei = (0, . . . , 1, . . . , 0) (with 1 in the ith coordinate),
so Zr is free of rank r.

Example 3.2.5. The trivial group 0 is the free abelian group on ∅.

Example 3.2.6. The abelian group Z/n (n > 1) is not free: since
(n + 1)a = a for a ∈ Z/n, linear combinations are never unique.
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Definition 3.2.7. The abelian group Sn(X) of singular n-chains on the
topological space X is Z Singn(X). Thus a singular n-chain is a formal
Z-linear combination ∑n

i=0 aiσi, ai ∈ Z, σi ∈ Singn(X).
It is sometimes convenient to extend the definition to n < 0, where

we take Singn(X) := ∅ and so Sn(X) := 0.

3.3 Boundaries, Cycles, and Singular Homology

Definition 3.3.1. By the universal property of free abelian groups,
the face map ∂i : Singn(X) → Singn−1(X) extends uniquely to a
homomorphism Sn(X)→ Sn−1(X), which we also denote ∂i, so that
the square

Singn(X) Singn−1(X)

Sn(X) Sn−1(X)

∂i

∂i

commutes. This is given by ∂i(∑j ajσj) = ∑j aj(∂iσj).

Definition 3.3.2. The boundary operator ∂ : Sn(X) → Sn−1(X) is the
homomorphism given by the alternating sum

∂ :=
n

∑
i=0

(−1)i∂i.

Thus for a 1-simplex σ : ∆1 → X, we have

∂σ = ∂0σ− ∂1σ = σ(1)− σ(0).

For a 2-simplex σ : ∆2 → X, we have

∂σ = ∂0σ− ∂1σ + ∂2σ.

Remark 3.3.3. We can (informally for now) think of the sign as
“reversing orientation”: if we write σ|ij for the path from σ(i) to
σ(j) then the oriented boundary of the 2-simplex decomposes as σ|01

followed by σ|12 and then σ|20, which we can represent as a linear
combination σ|01 + σ|12 + σ|20, while the formula for ∂σ above gives

∂σ = σ|12 − σ|02 + σ|01;

these agree if we think of −σ|02 as corresponding to the reversed path
σ|20.

We give chains with no boundary a special name:

Definition 3.3.4. An n-cycle in X is an n-chain c ∈ SnX such that
∂c = 0. We write

Zn(X) := ker(∂ : Sn(X)→ Sn−1(X)) ⊆ Sn(X)

for the subgroup of cycles.

Example 3.3.5. If σ : ∆1 → X is a loop, so that σ(0) = σ(1), then σ

is a cycle. Similarly, if σi : ∆1 → X, i = 1, . . . , n are paths such that
σi(1) = σi+1(0) and σ1(0) = σn(1), then σ1 + · · ·+ σn is a cycle.
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Definition 3.3.6. An n-boundary in X is an n-chain c such that there
exists an (n + 1)-chain b with c = ∂b. We write

Bn(X) := im(∂ : Sn+1(X)→ Sn(X)) ⊆ Sn(X)

for the subgroup of boundaries.

Proposition 3.3.7. For every topological space X, the boundary operatior ∂

satisfies
∂2 = 0,

where ∂2 denotes the composite Sn+1(X)
∂−→ Sn(X)

∂−→ Sn−1(X).

Proof. Since Sn+1(X) is free, it suffices to show that ∂2σ = 0 for
σ ∈ Singn+1(X). We compute

∂2σ = ∂

(
n+1

∑
i=0

(−1)i∂iσ

)

=
n+1

∑
i=0

(−1)i∂(∂iσ)

=
n+1

∑
i=0

(−1)i

(
n

∑
j=0

(−1)j∂j∂iσ

)

=
n+1

∑
i=0

n

∑
j=0

(−1)j+i∂j∂iσ

Here ∂j∂iσ = ∂j(σ ◦ di) = σ ◦ (didj), so if j < i we can use Lemma 3.1.6
to get

∂j∂iσ = ∂i−1∂jσ.

Applying this to the part of the sum where j < i we get

∂2σ = ∑
0≤j<i≤n+1

(−1)j+i∂j∂iσ + ∑
0≤i≤j≤n

(−1)j+i∂j∂iσ

= ∑
0≤j<i≤n+1

(−1)j+i∂i−1∂jσ + ∑
0≤i≤j≤n

(−1)j+i∂j∂iσ

= ∑
0≤j<i≤n+1

(−1)j+i∂i−1∂jσ + ∑
0≤j′<i′≤n+1

(−1)j′+i′−1∂i′−1∂j′σ,

= 0,

where in the penultimate line we rewrote the second sum using the
indices j′ := i, i′ := j + 1.

Corollary 3.3.8. Every boundary is a cycle, i.e. Bn(X) ⊆ Zn(X) as sub-
groups of Sn(X).

Definition 3.3.9. For X a topological space, the nth singular homology
group Hn(X) is the quotient

Hn(X) := Zn(X)/Bn(X).

Typically we can’t compute these homology groups directly from
the definition of singular chains, but need to use tools we’ll develop
later in the course. However, we can already compute homology
groups in two very simple cases:
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Example 3.3.10 (H∗(∅)). Since there are no maps ∆n → ∅, we have
Singn(∅) = ∅ and Sn(∅) = 0 for all n, so

Hn(∅) = 0

for all n.

Example 3.3.11 (H∗(∗)). There is a unique map cn : ∆n → ∗ for any
n, so Singn(∗) = {cn}. Thus Sn(∗) = Zcn is the free abelian group
generated by the single generator cn. By uniqueness we also know
that ∂icn = cn−1 for all i, so that

∂cn =
n

∑
i=0

(−1)icn−1 =

(
n

∑
i=0

(−1)i

)
cn−1 =

0, n odd,

cn−1, n even.

This implies that we have

Zn(∗) =

Z, n > 0 odd, n = 0,

0, n > 0 even, n < 0,
Bn(∗) =

Z, n > 0 odd,

0, n even, n = 0, n < 0,

and so

Hn(∗) ∼=


Z/Z, n > 0 odd,

0/0, n > 0 even or n < 0,

Z/0, n = 0

∼=

Z, n = 0,

0, n ̸= 0.

3.4 Signs and Orientations

Let us make more precise the idea that changing signs in H1(X)

corresponds to reversing the orientation of paths.

Definition 3.4.1. Any function ϕ : {0, . . . , n} → {0, . . . , m} gives a
continuous map ∆(ϕ) : ∆n → ∆m given by (t0, . . . , tn) 7→ (s0, . . . , sm)

where
sj = ∑

i∈ϕ−1(j)

ti.

Example 3.4.2. The face map di : ∆n−1 ↪→ ∆n corresponds to

{0, . . . , n− 1} ∼= {0, . . . , n} \ {i} ↪→ {0, . . . , n}

(using the unique order-preserving isomorphism).

Example 3.4.3. Let α : {0, 1} → {0, 1} be the automorphism that per-
mutes 0 and 1; this induces a homeomorphism ∆(α) : ∆1 ∼−→ ∆1 (given
in terms of the embedding in R2 by flipping the two axes), which
reverses the orientation of ∆1. (In terms of the reparametrization
[0, 1] ∼= ∆1, α corresponds to the orientation-reversing automorphism
t 7→ (1− t).)
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Proposition 3.4.4. For any 1-simplex σ : ∆1 → X, the chain

σ ◦ α + σ

is a boundary.

Remark 3.4.5. This proposition says that σ ◦ α and −σ represent the
same homology class, so that in H1(X) we can think of −[σ] as the
path obtained by reversing the orientation of σ.

Proof of Proposition 3.4.4. Let ϕ : {0, 1, 2} → {0, 1} be the function tak-
ing 0, 2 to 0 and 1 to 1. Then ∆(ϕ) : ∆2 → ∆1 is given by

(t0, t1, t2) 7→ (t0 + t2, t1);

this “collapses” the 2-simplex to a 1-simplex and sends the entire
face d1(∆2) (where t1 = 0) to the point (1, 0). The 2-simplex σ ◦ ∆(ϕ)
satisfies

∂0(σ ◦ ∆(ϕ)) = σ ◦ α,

∂1(σ ◦ ∆(ϕ)) = σ ◦ ∆(ψ),

∂2(σ ◦ ∆(ϕ)) = σ,

where ψ : {0, 1} → {0, 1} is the map sending 0, 1 to 0. Then the 1-
simplex σ ◦ ∆(ψ) is constant at the point p := σ(1, 0), so if we write
Cn(p) for the n-simplex constant at p we have

∂(σ ◦ ∆(ϕ)) = σ ◦ α− C1(p) + σ

But we also have

∂C2(p) = C1(p)− C1(p) + C1(p) = C1(p),

so that

σ ◦ α + σ = ∂(σ ◦ ∆(ϕ)− C2(p)).

3.5 Chain Complexes and Functoriality

We now want to prove that the singular homology groups give a
sequence of functors from topological spaces to abelian groups. It is
convenient to do this in two steps, which requires introducing some
terminology for the structure we have obtained on the singular chains:

Definition 3.5.1. A graded abelian group A• is a sequence of abelian
groups An, n ∈ Z. A chain complex is a graded abelian group A•
together with homomorphisms ∂ : An → An−1 that satisfy ∂2 = 0

where ∂2 is the composite An+1
∂−→ An

∂−→ An−1.

Example 3.5.2. For a topological space X, we have shown that (S•X, ∂)

is a chain complex, the singular chain complex of X.

We can define cycles and boundaries in any chain complex:
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Definition 3.5.3. If (A•, ∂) is a chain complex, we write

Zn(A) := ker(∂ : An → An−1) ⊆ An

for the group of n-cycles and

Bn(A) := im(∂ : An+1 → An) ⊆ An

for the group of n-boundaries. Since ∂2 = 0 by assumption, we again
have Bn(A) ⊆ Zn(A). The nth homology group Hn(A) is the quotient

Hn(A) := Zn(A)/Bn(A).

Example 3.5.4. The singular homology groups of a topological space
X are precisely the homology groups H∗(S•(X)) of the chain complex
S•(X).

Now we can introduce the appropriate notion of morphisms be-
tween chain complexes:

Definition 3.5.5. Suppose A• and B• are chain complexes. A chain
map f• : A• → B• is a sequence of homomorphisms fn : An → Bn that
are compatible with the boundary maps in the sense that the squares

An Bn

An−1 Bn−1

fn

∂ ∂

fn−1

commute, i.e. we have
∂ fn = fn−1∂

for all n.

Notation 3.5.6. We define the following categories:

• grAb has graded abelian groups as objects and graded homomor-
phisms (by which we just mean sequences of homomorphisms) as
its morphisms,

• Ch has chain complexes as objects and chain maps as morphisms.

Lemma 3.5.7. S• is a functor Top→ Ch.

Proof. For a continuous map f : X → Y we first define

Singn( f ) : Singn(X)→ Singn(Y)

to be the map of sets taking σ : ∆n → X to the composite f ◦ σ : ∆n →
Y. Then

∂i(Singn( f )(σ)) = ( f ◦ σ) ◦ di = f ◦ (σ ◦ di) = Singn−1( f )(∂iσ).

Next we define Sn( f ) : Sn(X) → Sn(Y) to be the unique homomor-
phism given by Singn( f ) on generators; thus

Sn( f )(∑
i

aiσi) = ∑
i

ai Singn( f )(σi).
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Then S•( f ) is a chain map: for σ ∈ Singn(X) we have

∂(Sn f )(σ) = ∑
i
(−1)i∂i(Singn f )(σ) = ∑

i
(−1)i(Singn−1 f )(∂iσ) = (Sn−1 f )(∂σ).

We also see immediately from the definition that S• satisfies S•( f ◦
g) = S•( f ) ◦ S•(g) and S•(idX) = idS•(X), so that S• is indeed a
functor.

Notation 3.5.8. We often write f∗ : S•(X)→ S•(Y) for the chain map
S•( f ) induced by a continuous map f : X → Y.

Lemma 3.5.9. Hn is a functor Ch→ Ab, and H∗ is a functor Ch→ grAb.

Proof. If f• : A• → B• is a chain map, then we want to define
Hn f : Hn(A•)→ Hn(B•). Since f• is a chain map we have

∂ fn(z) = fn−1∂z = 0, z ∈ Zn(A),

fn(∂x) = ∂( fn+1x), x ∈ An+1,

and so f• restricts to homomorphisms Zn A→ ZnB and Bn A→ BnB.
Thus we get a homomorphism Zn A→ ZnB→ HnB which takes Bn A
to 0, and so factors through a canonical homomorphism Hn A→ HnB
(taking a class [x] to [ fnx]). It is clear from the definition that this
construction is compatible with composition and identities and so is
a functor.

Combining the two lemmas, we see that singular homology is a
functor

H∗ : Top S•−→ Ch
H∗−→ grAb.

This implies that if two spaces X, X′ are homeomorphic, then their
homology groups are isomorphic. We will prove later that singular
homology actually takes homotopy equivalences to isomorphism, and
so gives a functor hTop→ grAb.

Notation 3.5.10. We often write f∗ : Hn(X) → Hn(Y) for the mor-
phisms Hn( f ) in homology induced by a continuous map f : X → Y.

3.6 H0 and Path Components

In this section we show that the 0th homology group of a space is
closely related to the set of path components. To state this result
precisely it is convenient to introduce another concept from category
theory:

Definition 3.6.1. Suppose F, G : C → D are two functors between
the same categories. A natural transformation η from F to G (written
η : F → G) consists of morphisms ηx : F(x) → G(x) for every x ∈ C

such that for every morphism ϕ : x → y in C, the square

F(x) G(x)

F(y) G(y)

ηx

F(ϕ) G(ϕ)

ηy
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commutes, meaning that G(ϕ)ηx = ηyF(ϕ). We say that η is a natural
isomorphism if the component ηx is an isomorphism for every x ∈ C. Thus a natural isomorphism is a collec-

tion of isomorphisms that are compat-
ible with all morphisms. You can also
think of a natural isomorphism as a “ho-
motopy of functors”.

Exercise 3.1. If V is a vector space over a field k, consider the linear map
ηV : V → V∗∗ to the double dual, taking v ∈ V to the linear functional

ηV(v) : V∗ → k, ϕ 7→ ϕ(v).

Prove that these maps are natural, i.e. they determine a natural transformation
η of functors Vectk → Vectk from the identity to the double dual. Show
that if we restrict to finite-dimensional vector spaces η becomes a natural
isomorphism.

Proposition 3.6.2. There is a natural isomorphism

H0(X) ∼= Zπ0X, X ∈ Top

of functors Top→ Ab.

Proof. For any topological space X, we have by definition Z0(X) =

S0(X) = ZX, the free abelian group on the set of points of X. The
map of sets X → π0X taking x ∈ X to its equivalence class [x] ∈ π0X
is a natural transformation and induces a natural homomorphism
πX : ZX → Zπ0X, which is clearly surjective; we need to show its
kernel is exactly the subgroup B0X of boundaries.

Since ∂σ for a 1-simplex σ is ∂0σ− ∂1σ = σ(1)− σ(0), the subgroup
B0(X) of boundaries is freely generated by x− y where x, y are points
of X such that there exists a path between x and y, i.e. x and y are in
the same path component. In particular, these generators all map to 0
under πX, so that B0(X) ⊆ ker πX. Conversely, suppose ∑n

x∈X a(x)x
is an element of ker πX (where a(x) = 0 for all but finitely many
x ∈ X). We can rewrite this as a sum

∑
α∈π0X

(
∑

x∈Xα

a(x)x

)

indexed over the path components Xα of X, which then maps to
∑α∈π0X

(
∑x∈Xα

a(x)
)

α in Zπ0X. Since Zπ0X is free, we must have
∑x∈Xα

a(x) = 0 for each path-component c. Thus the number of
positive and negative points in ∑x∈Xα

a(x)x must be equal, i.e. we can
write this (non-canonically) as a finite sum ∑n

i=1 xi − yi where xi, yi

are points in Xα. Since this is a path-component, we can choose paths
pi with pi(0) = yi, pi(1) = xi; then we have

∑
x∈Xα

a(x)x =
n

∑
i=1

∂pi = ∂

(
n

∑
i=1

pi

)
.

This is true for each path-component, and so we must have that
∑x∈X a(x)x is in B0(X) as required.

Remark 3.6.3. The naturality of the isomorphism in Proposition 3.6.2
is very useful: it lets us explicitly identify the morphism f∗ : H0(X)→
H0(Y) induced by a continous map f : X → Y as the homomorphism
Zπ0(X)→ Zπ0(Y) that arises by linearizing the map π0( f ) : π0(X)→
π0(Y), which takes the equivalence class [x] containing x ∈ X to the
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class [ f (x)] containing f (x). In other words, if we write an element
a of H0(X) ∼= Zπ0(X) as a = ∑n

i=1 ai[xi] with ai ∈ Z, xi ∈ X, then
f∗(a) = ∑n

i=1 ai[ f (xi)].

Example 3.6.4. For any topological space X there is a unique continu-
ous map X → ∗, which gives a homomorphism H∗X → H∗∗. Since
H∗∗ vanishes except in degree 0, the only interesting part is the map
H0X → H0∗. Since the isomorphism of Proposition 3.6.2 is natural,
we can identify this with the homomorphism Zπ0X → Z induced by
the unique morphism of sets π0X → ∗; this takes each generator in
π0X to 1 ∈ Z.

3.7 H1 and the Fundamental Group

Suppose X is a path-connected space. In this section we will show
that we can identify the first homology group H1(X) in terms of the
fundamental group of X.

Recall that if x is a point of X, the fundamental group π1(X, x) con-
sists of pointed homotopy classes of loops, with the group operation
given by concatenating loops. More precisely, if we define

L(X, x) := {p : I → X : p(0) = p(1) = x},

then π1(X, x) is the quotient of L(X, x) where we identify paths
p, q if there exists a homotopy H : I × I → X such that H(s, 0) =

p(s), H(s, 1) = q(s) and H(0, t) = H(1, t) = x for all t ∈ I.
By definition, L(X, x) is a subset of Sing1(X), which gives a func-

tion
α : L(X, x)→ Sing1(X)→ S1(X).

Here ∂α(p) = x− x = 0, so α(p) is a cycle for every p ∈ L(X, x); we
can therefore view α as a function L(X, x)→ Z1(X).

Lemma 3.7.1. The composite

L(X, x) α−→ Z1(X)→ H1(X)

factors through the quotient π1(X, x).

Proof. We must show that given loops p, q and a pointed homotopy H
as above, the chain q− p is a boundary. Dividing the square I× I into
two triangles, we get inclusions U, L : ∆2 ↪→ I × I given on vertices by

U(e0) = (0, 0), U(e1) = (1, 0), U(e2) = (1, 1),

L(e0) = (0, 0), L(e1) = (0, 1), U(e2) = (1, 1).

Then H ◦U − H ◦ L is a chain on X that satisfies

∂(H ◦U − H ◦ L) = (q− d + cx)− (cx − d + p) = q− p,

where cx is the path constant at x and d is the restriction of H to the
diagonal from (0, 0) to (1, 1).

We thus have a function β : π1(X, x)→ H1(X).
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Proposition 3.7.2. Suppose p, q : I → X are paths such that p(1) = q(0).
Define a new path p ∗ q : I → X by concatenating p and q, so that

p ∗ q(t) =

p(2t), 0 ≤ t ≤ 1
2 ,

q(2t− 1), 1
2 ≤ t ≤ 1.

Then p + q− p ∗ q is a boundary in S1(X).

Proof. We abbreviate r := p ∗ q. Define a continuous map ϕ : ∆2 → I
by

ϕ(a0e0 + a1e1 + a2e2) = a1 · 1
2 + a2,

where the ai are non-negative real numbers with a0 + a1 + a2 = 1.
This takes the vertices e0, e1, e2 to 0, 1

2 , 1, respectively. If we identify ∆1

with I using the isomorphism t 7→ (1− t)e0 + te1, then the 2-simplex
r ◦ ϕ : ∆2 → X satisfies:

∂0(r ◦ ϕ)(t) = r(ϕ((1− t)e1 + te2)) = r( 1−t
2 + t) = r( 1+t

2 ) = q(t),

∂1(r ◦ ϕ)(t) = r(ϕ((1− t)e0 + te2)) = r(t),

∂2(r ◦ ϕ)(t) = r(ϕ((1− t)e0 + te1)) = r( t
2 ) = p(t).

Hence ∂(r ◦ ϕ) = q− r + p, as required.

Corollary 3.7.3. β : π1(X, x)→ H1(X) is a group homomorphism.

Proof. Given loops p, q : I → X at x, their product in π1(X, x) is
represented by the concatenation p ∗ q as in Proposition 3.7.2. Since
p + q− p ∗ q is then a boundary, we have [p] + [q] = [p ∗ q] in H1(X),
which implies that β is a homomorphism.

Proposition 3.7.4. Suppose γ ∈ S1(X) is a 1-chain such that ∂γ = x− y
for two points x, y ∈ X where either x ̸= y or the point x = y occurs as a
boundary of a 1-simplex in γ. Then there exists a path p from y to x in X
such that γ− p is a boundary.

Proof. Suppose γ = ∑n
i=1 ai pi with pi ∈ Sing1(X), ai ∈ Z. Using

Proposition 3.4.4 we may assume all the ai’s are positive: if not, replace
ai pi by (−ai)(p−1

i ) where p−1
i is pi composed with the orientation-

reversing automorphism of ∆1; this only changes γ by a boundary.
We may then rewrite γ as ∑N

j=1 qj where each term qj is a path; we
induct on the positive integer N (with the case N = 1 being trivial).
For the inductive step we first note there must exist some path qi

in the sum γ such that qi(1) = x. If z := qi(0) we have γ = qi + γ′

where ∂γ′ = z− y. There are two cases to consider:

• z ̸= y: In this case by hypothesis we can choose a path q′ from y to z
such that γ′ − q′ is a boundary. Then γ− (γ′ − q′) = qi + q′ differs
from γ by a boundary. Moreover, if r denotes the concatenation of
q′ and qi then q′ ∗ qi is a path from y to x and q′ + qi − q′ ∗ qi is a
boundary by Proposition 3.7.2. Then γ− q′ ∗ qi is a boundary.
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• z = y: Then ∂γ′ = 0. The point y need not appear as a term in
the boundary, but by hypothesis (as N > 1) if we choose a point w
that does appears as a boundary point in γ′ then we can choose
a path q′ from w to w such that γ′ − q′ is a boundary. Since X is
path-connected we can choose a path r from y to w, and then q′′ :=
r ∗ (q′ ∗ r−1) differs from q′ by a boundary by Proposition 3.7.2
and Proposition 3.4.4. Now we can use Proposition 3.7.2 again to
conclude that γ− q′′ ∗ qi is a boundary.

Lemma 3.7.5. β : π1(X, x)→ H1(X) is surjective.

Proof. Suppose γ is a 1-cycle on X. If γ ̸= 0 we can choose a point y
that occurs as a boundary point of one of the 1-simplices that occur
in γ. As a special case of Proposition 3.7.4 we can then choose a path
p : I → X with p(0) = p(1) = y such that [γ] = [p] in H1(X). It
therefore suffices to show that [p] is in the image of β. Since X is by
assumption path-connected, we can choose a path q from x to y. Since
q + q ◦ σ is a boundary by Proposition 3.4.4, [p] is also represented by
q + p + q ◦ σ; by Proposition 3.7.2 this cycle represents the same class
as that of the loop p′ obtained by concatenating the paths q, p, and
q ◦ σ, which is a loop at x and so in the image of β, as required.

Definition 3.7.6. Let G be a group. The commutator subgroup [G, G] ⊆
G is the (normal) subgroup generated by the commutators in G, i.e.
the elements of the form ghg−1h−1 for g, h ∈ G. The abelianization of
G is the quotient Gab := G/[G, G].

Lemma 3.7.7. If H is an abelian group, then every group homomorphism
ϕ : G → H factors uniquely through the abelianization Gab, which is an
abelian group.

Proof. Since H is abelian, we have ϕ(g)ϕ(h) = ϕ(h)ϕ(g) for all g, h ∈
G, which means ϕ(ghg−1h−1) = 1 so that ϕ factors through the
quotient. If [g] denotes the image of g ∈ G in Gab then we have
[g][h] = [gh] = [hg] = [h][g] since the quotient identifies gh and
hg.

Since H1(X) is abelian, the homomorphism β factors uniquely
through a surjective homomorphism γ : π1(X, x)ab → H1(X).

Proposition 3.7.8. The homomorphism γ is injective.

Proof. Since X is path-connected, we can choose for every point
y ∈ X a path py : I → X with p(0) = x, p(1) = y; we assume
that px is the constant path at x. We can then define a function This proof uses the Axiom of Choice,

but this is not really necessary.Λ : Sing1(X)→ L(X, x) by

q 7→ pq(0) ∗ (q ∗ p−1
q(1)),

where we extend the notation for contatenation to paths that are not
loops in the obvious way. Note that if q is a loop at x then Λ(q) is
homotopic to q (since px represents the identity in the fundamental
group).
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Since π1(X, x)ab is an abelian group, the composite

Sing1(X)
Λ−→ L(X, x)→ π1(X, x)→ π1(X, x)ab

extends uniquely to a homomorphism λ : S1(X)→ π1(X, x)ab. Now
if q is a loop at x, we see that λ(q) is precisely the image in the quotient
π1(X, x)ab of the element of the fundamental group represented by
the loop q.

We claim that the restriction λ takes boundaries to 0. To see this,
consider a 2-simplex σ : ∆2 → X; we must show that λ(∂σ) = 0. By
definition we have

∂σ = ∂0σ− ∂1σ + ∂2σ,

so that λ(∂σ) is represented by the loop

Λ(∂2σ) ∗Λ(∂0σ) ∗Λ(∂1σ)−1 ≃ pσ(e0)
∗ ∂2σ ∗ p−1

σ(e1)
∗ pσ(e1)

∗ ∂0σ ∗ p−1
σ(e2)
∗ pσ(e2)

∗ (∂1σ)−1 ∗ p−1
σ(e0)

≃ pσ(e0)
∗ ∂2σ ∗ ∂0σ ∗ (∂1σ)−1 ∗ p−1

σ(e0)
.

Since the 2-simplex σ gives a nullhomotopy of the loop ∂2σ ∗ ∂0σ ∗
(∂1σ)−1 at σ(e0) that goes around the boundary of σ, we see that
λ(∂σ) is indeed 0.

It follows that λ|Z1(X) factors through a homomorphism λ′ : H1(X)→
π1(X, x)ab, which satisfies λ′γ = id since by construction for a loop q
at x the image of γ(q) under λ′ is the image of q in π1(X, x)ab. We
conclude that γ must be injective, as required.

Combining our results in this section, we get:

Theorem 3.7.9. If (X, x) is a path-connected pointed space, there is an
isomorphism

π1(X, x)ab ∼= H1(X).

Remark 3.7.10. More precisely, this is a natural isomorphism of
functors Top∗ → Ab.

3.8 Disjoint Unions

Definition 3.8.1. Given abelian groups Ai (i ∈ I), their direct sum⊕
i∈I Ai is the subset of the cartesian product ∏i∈I Ai consisting of

lists (ai)i∈I (ai ∈ Ai) where ai = 0 for all but finitely many I, with the
addition given componentwise.

Exercise 3.2. Let Ai, i ∈ I be a collection of abelian groups indexed by a set
I, and define the inclusion Ij : Aj →

⊕
i∈I Ai by Ij(a) = (ai)i∈I where aj = a

and ai = 0 otherwise. Show that the Ij’s exhibit the direct sum
⊕

i∈I Ai as
the I-indexed coproduct in Ab, i.e. given homomorphisms ϕj : Aj → B there
exists a unique homomorphism ϕ :

⊕
i∈I Ai → B with ϕj = ϕ ◦ Ij.

Exercise 3.3. Given sets Ti, i ∈ I, show that there is a natural isomorphism

Z

(
⨿

i
Ti

)
∼=
⊕

i
ZTi.

[Hint: We can view the left-hand side as consisting of functions f : ⨿i Ti → Z

that are 0 except at finitely many elements, while the right-hand side consists
of a family of functions fi : Ti → Z that are all zero except at finitely many
elements, and such that fi = 0 except for finitely many indices i.]
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Exercise 3.4 (Direct sums commute with quotients in Ab). Show that given
abelian groups Ai with subgroups Bi ⊆ Ai for i ∈ I, there is a canonical
isomorphism ⊕

i∈I
Ai/Bi ∼=

(⊕
i∈I

Ai

)
/

(⊕
i∈I

Bi

)
.

[Hint: Show that homomorphism
⊕

i∈I Ai →
⊕

i∈I Ai/Bi (defined as the
sum of the quotient maps) exhibits the target as the quotient by

⊕
i∈I Bi, by

checking it satisfies the universal property of the quotient.]

Proposition 3.8.2. For topological spaces Xi (i ∈ I) there is a natural
isomorphism

H∗

(
⨿
i∈I

Xi

)
∼=
⊕
i∈I

H∗(Xi).

Proof. Since ∆n is connected, any n-simplex σ : ∆n → ⨿i Xi must lie We can write ∆n = ⨿i σ−1(Xi) where
the preimages σ−1(Xi) are disjoint open
subsets, hence all but one must be
empty.

in one of the Xi’s. Thus we have Singn(⨿i Xi) ∼= ⨿i Singn(Xi).
By Exercise 3.3 this implies that we have a natural isomorphism

Sn

(
⨿

i
Xi

)
∼=
⊕

i
Sn(Xi).

Moreover, the boundary map ∂ for ⨿i Xi decomposes as the sum of
the boundary maps for each Xi, so that

Zn

(
⨿

i
Xi

)
∼=
⊕

i
Zn(Xi), Bn

(
⨿

i
Xi

)
∼=
⊕

i
Bn(Xi),

and so

Hn

(
⨿

i
Xi

)
∼=
⊕

i
Zn(Xi)/

⊕
i

Bn(Xi) ∼=
⊕

i
Zn(Xi)/Bn(Xi) ∼=

⊕
i

Hn(Xi),

where the second isomorphism is that of Exercise 3.4.

Example 3.8.3. Let S be a set, equipped with the discrete topology.
We can identify this topological space with ⨿s∈S ∗. Since we already
computed H∗(∗) we can conclude

H∗(S) ∼=
⊕
s∈S

H∗(∗) ∼=

0, ∗ ̸= 0,

ZS, ∗ = 0.





4
Relative Homology and Long Exact Sequences

In this chapter we first introduce relative homology for a pair (X, A)

(where A is a subspace of X) in §4.1 and exact sequences in §4.2, where
we also prove that there is a long exact sequence that relates the
relative homology of (X, A) to the homologies of the spaces X and
A. We generalize this construction in §4.3 where we see that any
short exact sequence of chain complexes give a long exact sequence
in homology.

The long exact sequence for relative homology is one of the key
properties of homology, known as the Eilenberg–Steenrod axioms, which
we state in §4.4 (we will prove them later). Perhaps the most important
of these axioms is the excision axiom, which we reformulate in §4.5
as an isomorphism between the relative homology of (X, A) and
the reduced homology of the quotient X/A, under some technical
assumptions on the pair (X, A).

Using the Eilenberg–Steenrod axioms we can compute the ho-
mology of the n-sphere Sn in §4.6. In §4.7 we then look at some
topological applications of the homology groups of spheres.

In §4.8 we construct another long exact sequence, the Mayer–Vietoris
sequence, which allows us to compute homology by decomposing a
space into two parts whose homology we know. Finally, in §4.9 we
use our computation of the homology of Sn to extract from every
continuous map f : Sn → Sn an integer, the degree of f , and discuss
how to compute this.

4.1 Relative Homology

Definition 4.1.1. Suppose (X, A) is a subspace pair, i.e. a pair consisting
of a topological space X and a subspace A ⊆ X. Then Singn(A) is
a subset of Singn(X), which makes Sn(A) a subgroup of Sn(X). We
then define the group Sn(X, A) of singular n-chains on X relative to A
as the quotient

Sn(X, A) := Sn(X)/Sn(A).

Since the boundary map ∂ : Sn(X)→ Sn−1(X) takes the subgroup
Sn(A) into Sn−1(A), it induces a homomorphism on quotients

∂ : Sn(X, A)→ Sn−1(X, A),
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which again satisfies ∂
2
= 0. This means that (S•(X, A), ∂) is a chain

complex, so that we have homology groups

H∗(X, A) := H∗(S•(X, A)),

the (singular) homology of X relative to A, or relative homology of
(X, A).

Let us unpack the definitions and make it a bit more explicit what
is going on here:

• First of all, an element of Sn(X, A) is an equivalence class [x] of
chains x ∈ Sn(X), where [x] = [x′] if x − x′ lies in the subgroup
Sn(A), i.e. is a linear combination of simplices whose images lie in
the subspace A ⊆ X. (Informally, [x] = [x′] means that the chains
x and x′ agree outside of A.)

• Such a class [x] is a cycle if ∂[x] = [∂x] = 0 — this means that
the boundary of x only contains (n − 1)-simplices in A, i.e. the
boundary of x lies in the subspace A.

• On the other hand, [x] is a boundary if [x] = ∂[y] = [∂y], which
means that x− ∂y lies in Sn(A). In other words, we can write x as
a boundary plus a chain in A.

• A relative homology class in Hn(X, A) is then represented by a
relative cycle [x], which in turn is represented by a chain x whose
boundary lies in A.

Remark 4.1.2. The relative homology H∗(X, A) is in some sense the
part of the homology of X where we ignore A. We’ll make this more
precise later, but the basic idea is that we can (sometimes) compute
the homology of X by computing H∗(A) and H∗(X, A) separately,
and then putting them back together.

Construction 4.1.3. Any n-cycle on X is in particular a relative cycle,
and any boundary is a relative boundary, so we have a canonical
homomorphism Hn(X) → Hn(X, A). We can also make a homo-
morphism ∂ : Hn(X, A) → Hn−1(A), called the boundary map, as
follows:

• Suppose the homology class γHn(X, A) is represented by a relative
cycle [x] ∈ Zn(X, A). Then ∂x is a chain in Sn−1(A). Since ∂2 = 0
we see that ∂x is a cycle, but it is not necessarily a boundary in
S•(A) (it is a boundary in S•(X), but it need not be the boundary
of any chain on A). Thus ∂x represents a homology class [∂x] ∈
Hn−1(A).

• We claim that this homology class is independent of the choice of
representative [x] and x. First of all, if [x] = [x′] then x− x′ is a
chain in A; then we have ∂x′ = ∂x + ∂(x− x′) so that [∂x′] = [∂x]
in Hn−1(A) since ∂(x− x′) is a boundary in A.

• Second, if γ is also represented by [y], then [x] = [y] + ∂[z] =
[y + ∂z]. By the previous point, this means [∂x] = [∂y + ∂2z] = [∂y],
as required.
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This shows that we have defined a function ∂ : Hn(X, A)→ Hn−1(A);
to check that this is a homomorphism it is enough to observe that we
can represent a sum in Hn(X, A) by a sum of representatives.

The three maps Hn(A)→ Hn(X) (coming from the inclusion A ↪→
X), Hn(X)→ Hn(X, A), and ∂ : Hn(X, A)→ Hn−1(A) fit together in
a precise way: they form a long exact sequence.

4.2 Exact Sequences

Definition 4.2.1. A (bounded or unbounded) sequence of abelian
groups and homomorphisms

· · · An+1
fn+1−−→ An

fn−→ An−1 → · · ·

is exact at An if ker fn = im fn+1. The sequence is exact if it is exact
at An for all n (excluding the end points, if there are any, where
the definition doesn’t make sense). A long exact sequence is an exact
sequence that’s unbounded in both directions.

Remark 4.2.2. If

· · · An+1
fn+1−−→ An

fn−→ An−1 → · · ·

is a long exact sequence, then in particular ker fn = im fn+1 so that
fn ◦ fn+1 = 0. Thus (A•, f•) is a chain complex. Conversely, a chain
complex A• is an exact sequence if and only if Hn(A) = 0 for all n.

Examples 4.2.3. We can express several common algebraic notions in
terms of exactness:

(i) 0→ A
f−→ B is exact if and only if f is injective,

(ii) A
f−→ B→ 0 is exact if and only if f is surjective,

(iii) 0 → A
f−→ B → 0 is exact if and only if f is both injective and

surjective, i.e. an isomorphism.

Definition 4.2.4. A short exact sequence is an exact sequence of the
form

0→ A i−→ B
q−→ C → 0.

The exactness conditions amount to saying

• i is injective,

• q is surjective,

• im i = kerq.

Thus the short exact sequence exhibits C as the quotient B/A.

Here is a key property of exact sequences.
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Lemma 4.2.5 (The 5-Lemma). Suppose we have a commutative diagram
of abelian groups and homomorphisms

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

α1 α2 α3 α4 α5

where the rows are exact and α1, α2, α4, α5 are all isomorphisms. Then α3 is
also an isomorphism.

As with many proofs in homological algebra, this is far more
instructive to work out by oneself:

Exercise 4.1. Prove the 5-Lemma.

Exercise 4.2. Suppose we have an exact sequence

(· · · )A
f−→ B

g−→ C h−→ D i−→ E(· · · ).

Show that there is a short exact sequence

0→ coker f → C → ker i→ 0,

where the cokernel coker f is the quotient B/ im f . (Thus we can in a sense
“decompose” a long exact sequence into a series of short exact sequences.)

Exercise 4.3. Let 0 → A i−→ B
q−→ C → 0 be a short exact sequence (SES).

A splitting of the SES is a section s : C → B, so that qs = idC. (The SES is
splittable if a splitting exists, while a split SES is a SES together with a choice
of splitting.)

(i) Show that a splitting s induces an isomorphism A⊕ C ∼−→ B. [Note that
different splittings can give different isomorphisms.]

(ii) Show that if C is a free abelian group then the SES above is splittable.
[Hint: Use the universal property of free abelian groups.]

(iii) Give an example of a SES that is not splittable.

Let’s return to the case of relative homology:

Proposition 4.2.6. Let (X, A) be a subspace pair. Then the sequence of
homomorphisms

· · · → Hn(A)
i∗−→ Hn(X)

q∗−→ Hn(X, A)
∂−→ Hn−1(A)→ · · ·

is a long exact sequence. Here i∗ is induced by the inclusion i : A ↪→ X, q∗
arises from the quotient map S•(X) → S•(X, A), and ∂ is the boundary
map defined above.

Proof. We must show that the composite of any pair of adjacent maps
is zero, which we can interpret as im ⊆ ker at every point in the
sequence, and that the sequence is exact, which is equivalent to the
additional condition ker ⊆ im at every point. Since there are three
kinds of groups in the sequence, this means we have 6 things to check:

• im i∗ ⊆ ker q∗: Given a homology class [α] ∈ Hn(A) represented
by α ∈ Sn(A), the image i∗[α] is represented by i∗α ∈ Sn(X); this
chain lies entirely in A, so it goes to 0 in Sn(X, A). In particular,
q∗i∗[α] = 0.
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• im q∗ ⊆ ker ∂: Suppose [γ] ∈ Hn(X) is represented by a cycle
γ ∈ Zn(X). Then q∗[γ] is represented by the image of γ in the
quotient Sn(X, A), and ∂q∗[γ] is represented by ∂γ — but γ is a
cycle, so this is indeed 0.

• im ∂ ⊆ ker i∗: Suppose [[β]] ∈ Hn(X, A) is represented by β ∈
Sn(X) with ∂β ∈ Sn−1(A). Then ∂[[β]] is represented by ∂β. The
image of this in Sn−1(X) is a boundary, and so represents 0 in
Hn−1(X).

• ker q∗ ⊆ im i∗: Suppose q∗[γ] = 0, where [γ] ∈ Hn(X) is repre-
sented by a cycle γ ∈ Sn(X). Then the image of γ in Sn(X, A) is a
boundary, meaning there exists β ∈ Sn+1(X) such that α := γ− ∂β

lies in Sn(A). But then [γ] = i∗[α] in Hn(X), as required.

• ker ∂ ⊆ imq∗: Suppose [[β]] ∈ Hn(X, A) is represented by β ∈
Sn(X). If ∂[[β]] = 0 in Hn−1(A), then ∂β is a boundary in Sn−1(A),
so there exists α ∈ Sn(A) such that ∂β = ∂α. Then β− α is a cycle
in Sn(X), and [[β]] = q∗[β− α].

• ker i∗ ⊆ im ∂: Suppose [α] ∈ Hn(A) is represented by α ∈ Sn(A)

and i∗[α] = 0. That means α is a boundary in Sn(X), i.e. there
exists γ ∈ Sn+1(X) with ∂γ = α. In particular, the boundary of γ

lies in A, so γ represents a class [[γ]] ∈ Hn+1(X, A). By definition
we then have [α] = ∂[[γ]], as required.

Remark 4.2.7. We will soon see that there is an alternative descrip-
tion of relative homology, which will make it possible to carry out
computations using this long exact sequence.

Example 4.2.8 (Reduced homology). Let’s look at a very simple ex-
ample of relative homology: Let (X, x) be a pointed space (i.e. x is
a point of X). If we don’t want to explicitly denote the point x, we
often write

H̃∗(X) := H∗(X, x),

and call this the reduced homology of X. We have a long exact sequence

· · · → Hn(∗)→ Hn(X)→ H̃n(X)→ Hn−1(∗)→ · · · .

If n > 1 then both Hn(∗) and Hn−1(∗) are 0, so Hn(X)
∼−→ H̃n(X).

That leaves us with the end of the long exact sequence,

0→ H1(X)→ H̃1(X)→ H0(∗)→ H0(X)→ H̃0(X)→ 0.

We computed H0, so we know H0(∗) ∼= Z, H0(X) ∼= Zπ0X, and the
map H0(∗) → H0(X) takes 1 ∈ Z to the generator [x] ∈ π0X. In
particular this map is injective, so H̃1(X)→ H0(∗) must be the zero
map, and so H1(X) → H̃1(X) is surjective; thus H1(X) ∼= H̃1(X).
Finally, we see that H̃0(X) is the quotient

H0(X)/Z[x] ∼= Z(π0(X) \ {[x]}).

In particular, if X is path-connected then

H̃∗(X) ∼=

H∗(X), ∗ > 0,

0, ∗ = 0.
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Example 4.2.9 (H∗(I, ∂I)). Let’s look at the subspace pair (I, ∂I) where
I = [0, 1] is the closed unit interval and ∂I = {0, 1} is its boundary,
i.e. the two end points. The space I is contractible, i.e. homotopy
equivalent to a point. We will see later that homology takes homotopy
equivalences to isomorphisms; assuming this for now, we have an
isomorphism

Hn(I) ∼= Hn(∗) ∼=

Z, n = 0,

0, n ̸= 0.

On the other hand, ∂I is the disjoint union of two points (with the
discrete topology), so we have

Hn(∂I) ∼= Hn({0})⊕ Hn({1}) ∼=

Z⊕Z, n = 0,

0, n ̸= 0.

We can then use the long exact sequence of the pair (I, ∂I) to find the
relative homology groups Hn(I, ∂I) — we will later see that these are
isomorphic to H̃n(I/∂I) so this computes the reduced homology of
the circle S1 ∼= I/∂I.

For n > 1 the part of the long exact sequence surrounding Hn(I, ∂I)
looks like

· · · → Hn(I)→ Hn(I, ∂I)→ Hn−1(∂I)→ · · · ,

where Hn(I) = Hn−1(∂I) = 0. This means we also have Hn(I, ∂I) = 0:
by exactness the image of Hn(I) is the kernel of the map to Hn−1(∂I)
— but Hn(I) = 0 so its image is 0, and since Hn−1(∂I) = 0 the kernel
is all of Hn(I, ∂I), which means

Hn(I, ∂I) = 0, n > 1.

To understand the remaining cases n = 0, 1 we look at the “tail” of
the long exact sequence:

· · · → H1(I)→ H1(I, ∂I)→ H0(∂I)
ϕ−→ H0(I)→ H0(I, ∂I)→ 0,

which becomes

0→ H1(I, ∂I)→ Z⊕Z
α−→ Z→ H0(I, ∂I)→ 0

after plugging in the homology groups we already know. By ex-
actness we see that H1(I, ∂I) is the kernel of the homomorphism α

and H0(I, ∂I) is the cokernel of α. But here α is the homomorphism
i∗ : H0(∂I) → H0(I) induced by the inclusion i : ∂I ↪→ I, which we
have identified with the homomorphism Zπ0(∂I)→ Zπ0(I) induced
by i on path components. Both components of ∂I are sent to the
unique component of I, so identifying Zπ0(∂I) with Z⊕Z by iden-
tifying the generators with (1, 0) and (0, 1), we see that α is given
by α(a, b) = a + b. Hence ker α is the subgroup of Z⊕Z generated
by (1,−1), which is isomorphic to Z, while coker α = 0 since α is
surjective. In summary, we have shown

Hn(I, ∂I) ∼=

Z, n = 1,

0, n ̸= 1.
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4.3 Short Exact Sequences of Chain Complexes

We can generalize the construction of the long exact sequence for
relative homology to obtain a long exact sequence from any short
exact sequence of chain complexes. This is an important tool in
homological algebra that we will use several variations of later on in
the course, so we take the time to introduce this here.

Definition 4.3.1. Suppose i• : A• → B• is a chain map such that each
homomorphism in is injective. Then we can define a quotient chain
complex C• := B•/A• with Cn := Bn/An: since we have commutative
squares

An Bn

An−1 Bn−1

in

∂ ∂

in−1

the boundary map Bn → Bn−1 induces a homomorphism ∂ : Cn →
Cn−1 which again satisfies ∂

2
= 0. Note that the quotient maps

qn : Bn → Bn/An give a chain map q• : B• → C•.

Example 4.3.2. If (X, A) is a subspace pair, then the relative singu-
lar chain complex S•(X, A) is precisely the quotient chain complex
S•(X)/S•(A).

Definition 4.3.3. A short exact sequence of chain complexes consists of
chain maps

0→ A•
i•−→ B•

q•−→ C• → 0

(where we write 0 for the chain complex with 0 in each degree) such
that

0→ An
in−→ Bn

qn−→ Cn → 0

is a short exact sequence for every n.

Construction 4.3.4. Continuing the notation of Definition 4.3.1, we
have for every n homomorphisms of homology groups

Hn(A)
Hn(i)−−−→ Hn(B)

Hn(q)−−−→ Hn(C).

Just as in Construction 4.1.3 we can use the boundary map for B to

define another homomorphism Hn(C)
∂−→ Hn−1(A):

• Suppose [c] is an element of Hn(C); this is represented by an
element c ∈ Cn = Bn/An such that ∂c = 0 in Cn−1.

• Since qn is surjective, we can choose b ∈ Bn such that c = qn(b).
Then ∂c = qn−1(∂b) and ∂c = 0 means that ∂b lies in ker qn−1 =

im in−1 and so ∂b = in−1(a) for a unique element a ∈ An−1.

• Then in−2(∂a) = ∂in−1(a) = ∂2b = 0, so as in−2 is injective we
have ∂a = 0. Thus a is a cycle and represents a homology class
[a] ∈ Hn−1(A). (Note that a is not necessarily a boundary, even
though its image in Bn−1 is a boundary.)
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• We claim the class [a] is independent of the choices we made.
First suppose b′ is another element such that qn(b′) = c, with
∂b′ = in−1(a′); then b′ − b is in ker qn = im in so there exists a
(unique) element x ∈ An with b′ − b = in(x). Thus

in−1(a′ − a) = ∂b′ − ∂b = ∂in(x) = in−1(∂x),

and so a′ − a = ∂x, i.e. a′ and a differ by a boundary, hence
[a′] = [a].

• Next suppose c′ is another element of Cn that represents [c], so
c′ = c + ∂y with y ∈ Cn+1. If y is the image of z ∈ Bn+1 then one
lift of c′ is b + ∂z, with ∂(b + ∂z) = ∂b, giving the same element of
An−1.

We thus have a well-defined map of sets ∂ : Hn(C)→ Hn−1(A), and it
is now easy to see that this is a homomorphism: for [c1], [c2] in Hn(C),
with preimages b1, b2 in Bn, the homology class ∂([c1] + [c2]) = ∂([c1 +

c2]) is the class represented by the preimage of ∂(b1 + b2) = ∂b1 + ∂b2.
In addition, we have

• ∂ ◦ Hn(qn) = 0, since for [c] = Hn(qn)[b] we can choose the preim-
age to be b with ∂b = 0,

• in−1 ◦ ∂ = 0 since ∂[c] is represented by the preimage of a boundary
in Bn−1.

Exercise 4.4. Given a commutative diagram of chain complexes and chain
maps

0 A• B• C• 0

0 A′• B′• C′• 0,

where the rows are exact, check that the boundary map on homology gives
commutative squares

Hn(C) Hn−1(A)

Hn(C′) Hn−1(A′).

∂

∂

Exercise 4.5. Suppose A ⊆ B are subspaces of a topological space X, and
the inclusion i : A ↪→ B induces isomorphisms i∗ : Hn(A)

∼−→ Hn(B) for
all n. Prove that the natural homomorphism Hn(X, A) → Hn(X, B) is an
isomorphism for all n. [Hint: Use the 5-Lemma and Exercise 4.4.]

Proposition 4.3.5. From a short exact sequence of chain complexes as above
we get a sequence of homology groups and homomorphisms

· · · → Hn(A)
Hn(i)−−−→ Hn(B)

Hn(q)−−−→ Hn(C)
∂−→ Hn−1(A)→ · · · .

This is a long exact sequence.

In other words, a short exact sequence of chain complexes gives a
long exact sequence in homology. We leave the proof as an exercise,
since it is really the same as that we did above in Proposition 4.2.6 for
relative homology.
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Exercise 4.6. Let 0 → A•
i•−→ B•

q•−→ C• → 0 be a short exact sequence of
chain complexes. Show that the induced sequence of homology groups

· · · → Hn(A)
Hn(i)−−−→ Hn(B)

Hn(q)−−−→ Hn(C)
∂−→ Hn−1(A)→ · · ·

is a long exact sequence.

4.4 The Eilenberg–Steenrod Axioms

We can now articulate the key properties of homology, in the form
of the axioms given by Eilenberg and Steenrod. We will eventually
prove that these are satisfied for our definition of homology, but for
the next part of the course we will instead assume they hold and use
them to compute some examples of homology groups.

Definition 4.4.1. Let Pair be the category whose objects are pairs
(X, A) where X is a topological space and A ⊆ X is a subspace, with
a morphism f : (X, A)→ (Y, B) given by a continuous map f : X → Y
such that f (A) ⊆ B. If f , g : (X, A) → (Y, B) are morphisms in Pair,
a homotopy from f to g is a map H : (X × [0, 1], A× [0, 1]) → (Y, B)
in Pair such that H(–, 0) = f , H(–, 1) = g. (In other words, H is a
homotopy from f to g such that H(a, t) ∈ B for all a ∈ A, t ∈ [0, 1].)
We say two maps of pairs f , g : (X, A)→ (Y, B) are homotopic if there
exists a homotopy between them in this sense.

Notation 4.4.2. If A ⊆ X is a subset of a topological space, we write
A◦ for the interior of A, the largest open subset of X contained in
A, and A for the closure of A, the smallest closed subset of X that
contains A.

Definition 4.4.3 (Eilenberg–Steenrod). An (ordinary) homology theory
consists of

• functors hn : Pair→ Ab, n ∈ Z (we abbreviate hn(X) := hn(X, ∅)),

• natural boundary maps ∂ : hn(X, A)→ hn−1(A), so that the squares

hn(X, A) hn−1(A)

hn(Y, B) hn−1(B)

∂

hn( f ) hn( f |A)

∂

commute for every map f : (X, A)→ (Y, B),

with the following properties:

(1) (Long exact sequences) For every pair (X, A), the sequence of
maps

· · · → hn(A)→ hn(X)→ hn(X, A)
∂−→ hn−1(A)→ · · ·

induced by the maps of pairs (A, ∅) → (X, ∅) → (X, A), is a
long exact sequence.

(2) (Homotopy axiom) If f , g : (X, A)→ (Y, B) are homotopic, then
hn( f ) = hn(g) for all n ∈ Z.



52 rune haugseng

(3) (Excision axiom) For (X, A) ∈ Pair, if U ⊆ A is a subset such that
U ⊆ A◦, then the homomorphisms

hn(X \U, A \U)→ hn(X, A)

induced by the inclusion (X \U, A \U) ↪→ (X, A), are isomor-
phisms for all n ∈ Z.

(4) (Additivity axiom) If X = ⨿i∈I Xi is a disjoint union, then the
inclusions Xi ↪→ X induce an isomorphism If we drop the dimension axiom, there

are many interesting examples of ho-
mology theories, such as K-theory and
cobordism theory, which are no longer
determined by their value at the point.
These are sometimes called extraordinary
homology theories, and are the starting
point for the subject of stable homotopy
theory.

⊕
i∈I

hn(Xi)
∼−→ hn(X)

for all n.

(5) (Dimension axiom) hn(∗) = 0 if n ̸= 0.

Remark 4.4.4. Eilenberg and Steenrod showed in 1945 that (if we
restrict to a class of “reasonable” spaces) there is for every abelian
group A a unique ordinary homology theory in this sense such that
h0(∗) ∼= A. We will prove later that singular homology satisfies the
axioms and so is indeed a homology theory in this sense. (We have We will also define a variant of singular

homology with coefficients in an abelian
group A, which gives the ordinary ho-
mology theory with h0(∗) ∼= A.

already proved all but two of the axioms, namely the homotopy and
excision axioms, but these are also the less formal ones!) Before we
do so, we will explore some consequences of the axioms, and in
particular the excision axiom.

Remark 4.4.5. Note that the homotopy axiom implies that a homotopy
equivalence induces isomorphisms in homology: If f : X → Y is a
continous map with homotopy inverse g : Y → X, so that there are
homotopies between g f and idX and between f g and idY, then for
the induced homomorphisms

f∗ : H∗(X)→ H∗(Y), g∗ : H∗(Y)→ H∗(X)

the homotopy axiom together with functoriality implies

g∗ f∗ = (g f )∗ = (idX)∗ = idH∗X , f∗g∗ = ( f g)∗ = (idY)∗ = idH∗Y,

so that f∗ is an isomorphism with inverse g∗.

Exercise 4.7. Suppose h∗ is an ordinary homology theory satisfying the
Eilenberg–Steenrod axioms.

(i) Suppose X = ⨿i∈I Xi is a coproduct and Ai ⊆ Xi is a collection of
subspaces. If A := ⨿i∈I Ai, show that the inclusions (Xi, Ai) ↪→ (X, A)

induce an isomorphism⊕
i∈I

h∗(Xi, Ai) ∼= h∗(X, A).

[Hint: Use the long exact sequence.]

(ii) If (Xi, xi) is a collection of pointed spaces, their wedge is the quotient
space ∨

i∈I
Xi :=

(
⨿
i∈I

Xi

)
/{xi : i ∈ I}
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where we identify all the base points to a single point x. Show that if
(Xi, {xi}) is a good pair for every i then there is a canonical isomor-
phism ⊕

i∈I
h̃∗(Xi) ∼= h̃∗(

∨
i∈I

Xi),

where for a pointed space (X, x) we write h̃∗(X) := h∗(X, x).

4.5 From Excision to Quotients

The excision axiom is in a sense the crucial axiom that allows us to
do some computations. Before we do so, it is convenient to give a
reformulation of it in terms of quotients of spaces:

Definition 4.5.1. Suppose X is a topological space and A ⊆ X is a
subspace. The quotient X/A is the quotient space X/ ∼ where ∼ is
the relation generated by x ∼ x′ if either x = x′ or x and x′ are both
in A. (Equivalently, this is the pushout

A X

∗ X/A

in Top.)

Definition 4.5.2. A pair (X, A) ∈ Pair is called a good pair if there exists This is really a very mild condition, so
arguably it would be more correct to say
that pairs that don’t satisfy this condition
are bad or pathological.

a subspace B ⊆ X such that A ⊆ B◦ and A ↪→ B is a deformation
retract, i.e. there exists a retraction ρ : B→ A of the inclusion i : A ↪→
B and a homotopy B× I → B from id to iρ, which we furthermore
require to satisfy H(a, t) ∈ A for all a ∈ A, t ∈ I.

Proposition 4.5.3. Suppose (X, A) is a good pair. Then the map

Hn(X, A)
∼−→ Hn(X/A, ∗)

induced by (X, A)→ (X/A, ∗) is an isomorphism for all n.

Proof. Choose B as in Definition 4.5.2. We then have a commutative
diagram of pairs

(X, A) (X, B) (X \ A, B \ A)

(X/A, ∗) (X/A, B/A) ((X/A) \ ∗, (B/A) \ ∗).

i j

k

ı ȷ

We want to show that the left vertical map gives isomorphisms in
homology. To see this we will check that all the other maps in the
diagram give isomorphisms:

• k is a homeomorphism of pairs.

• j gives an isomorphism by the excision axiom (which we can apply
to A by our assumption).

• The same holds for ȷ since by definition of the quotient topology
we have {∗} ⊆ (B/A)◦.
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• Looking at the right square we see that the middle vertical map
gives isomorphisms in homology, since this is true for the three
other maps in the square.

• The inclusion A ↪→ B gives an isomorphism Hn(A)→ Hn(B) for
all n, by the homotopy axiom, and so by Exercise 4.5 the map
Hn(X, A)→ Hn(X, B) induced by i is also an isomorphism.

• The same argument applies to ı: By assumption we have a retrac-

tion B
ρ−→ A ↪→ B fixing A, which induces B/A

ρ−→ ∗ → B/A, and
a homotopy B× I → B between ρ and the identity that takes A to
itself; this induces a homotopy B/A× I → B/A between ρ and
the identity, so ∗ ⊆ B/A is also a deformation retract.

We can then conclude the left vertical morphism gives isomorphisms
in homology, since we know this for the three other maps in the left
square.

4.6 Homology of Spheres

Now we are finally in a position to compute the homology of the
n-dimensional sphere Sn.

Proposition 4.6.1. For n > 0, H∗(Sn) ∼=

Z, ∗ = 0, n,

0, otherwise.

Proof. We consider the long exact sequence for the pair (Dn, ∂Dn),
which looks like

· · · → Hi(∂Dn)→ Hi(Dn)→ Hi(Dn, ∂Dn)→ Hi−1(∂Dn)→ · · · .

Here ∂Dn ∼= Sn−1, while Dn is contractible, so the homotopy axiom
implies

Hi(Dn) ∼= Hi(∗) ∼=

Z, i = 0,

0, otherwise.

Moreover, by Proposition 4.5.3 we have an isomorphism

Hi(Dn, ∂Dn) ∼= Hi(Dn/∂Dn, ∗) ∼= H̃i(Sn).

Thus we can express the long exact sequence as

· · · → Hi(∗)→ H̃i(Sn)→ Hi−1(Sn−1)→ Hi−1(∗)→ · · · .

If i > 1 then we get H̃i(Sn) ∼= Hi−1(Sn−1), while at the end of the
exact sequence we have

0→ H̃1(Sn)→ H0(Sn−1)→ H0(∗)→ H̃0(Sn)→ 0.

We already considered the case n = 1 in Example 4.2.9, so we may
assume n > 1. Then Sn−1 is path-connected and H0(Sn−1)→ H0(∗)
is an isomorphism, so we also have H̃1(Sn) = H̃0(Sn) = 0. From this
the result follows by induction (using Example 4.2.8 to pass between
reduced and unreduced homology).
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The computation of H∗(Sn) will play an important role later on
in the course, so it is worth looking at it a little more carefully, and
explicitly identify a generator of the free abelian group Hn(Sn):

Proposition 4.6.2. The homology class [q] represented by the quotient map
q : ∆n → ∆n/∂∆n ∼= Sn is a generator of Hn(Sn) ∼= Z. For n = 1, this also follows from the iso-

morphism π1S1 ∼= H1S1, since q corre-
sponds to the identity of S1, a generator
of π1S1.

We have to go back to our computation of H∗(Sn) and work out
the generator inductively. Instead of the long exact sequence for
(Dn, ∂Dn) we could just as well have looked at the homeomorphic
pair (∆n, ∂∆n). Then we identify H̃n(Sn) through the isomorphism

q∗ : Hn(∆n, ∂∆n)
∼−→ H̃n(Sn),

induced by the map of pairs q : (∆n, ∂∆n)→ (∆n/∂∆n, ∗). We first see
what the class [q] corresponds to under this isomorphism:

The identity map of ∆n is a singular n-simplex of ∆n; it is not a
cycle in S•(∆n), but its boundary lies (tautologously) in ∂∆n and so
id∆n determines a class In = [id∆n ] ∈ Hn(∆n, ∂∆n). Going back to the
definition of the homomorphism q∗ we see that q∗[σ] = [q ◦ σ] and so

q∗ In = [q ◦ id∆n ] = [q].

We can therefore reformulate the proposition as:

Proposition 4.6.3. The homology class In ∈ Hn(∆n, ∂∆n) is a generator.

We will prove this by induction, using the following observation:

Lemma 4.6.4. For n > 1 there is an isomorphism

Hn(∆n, ∂∆n) ∼= Hn−1(∆n−1, ∂∆n−1),

under which In corresponds to In−1.

Proof. In the long exact sequence for the pair (∆n, ∂∆n), we saw that
the boundary map

∂ : Hn(∆n, ∂∆n)
∼−→ Hn−1(∂∆n)

is an isomorphism.
From the definition of the boundary map we have that ∂In is

represented by ∂id∆n = ∑i(−1)idi in Sn−1(∂∆n) (where we think of
the face map di as an inclusion ∆n−1 ↪→ ∂∆n).

To complete the proof we want an identification of Hn−1(∂∆n) with
Hn−1(∆n−1, ∂∆n−1) under which the class represented by ∑i(−1)idi

corresponds to In−1.
Let Λn

i denote the subspace of ∂∆n where we remove the interior
of the ith face (so this is the union of all but one face in ∆n). (This is
known as the ith horn of ∆n.) We have continuous maps of pairs

(∆n−1, ∂∆n−1)
d0
−→ (∂∆n, Λn

0 )← (∂∆n, ∗),

where the first is the inclusion of the 0th face and the latter picks out
some point in Λn

0 . Both give isomorphisms in homology: the first
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by excision and the second by the homotopy axiom and Exercise 4.5
(since the point is a deformation retraction of Λn

0 ). We thus have
isomorphisms

Hn−1(∆n−1, ∂∆n−1)
d0
∗−→ Hn−1(∂∆n, Λn

0 )
ϕ←− H̃n−1(∂∆n).

Here d0
∗ In−1 = [d0 ◦ id∆n−1 ] = [d0] (which is a relative cycle since

its boundary lies in Λn
0 ). On the other hand, the alternating sum

∑i(−1)idi in Sn−1(∂∆n, ∗) is also taken to [d0] in Hn−1(∂∆n, Λn
0 ) since

the other terms lie in Sn−1(Λn
0 ).

Thus under the composite isomorphism Hn−1(∆n−1, ∂∆n−1) ∼=
H̃n−1(∂∆n) the class In−1 is identified with ∂In, as required.

Proof of Proposition 4.6.3. The lemma implies that, for n > 1, the class
In is a generator in Hn(∆n, ∂∆n) if and only if In−1 is generator in
Hn−1(∆n−1, ∂∆n−1). By induction, this means it’s enough to show
that I1 is a generator in H1(∆1, ∂∆1). Here we saw that the boundary
map H1(∆1, ∂∆1)→ H0(∂∆1) ∼= Z⊕Z corresponded to the injective
map Z → Z⊕Z taking 1 to (1,−1). But (1,−1) = (1, 0)− (0, 1) is
(up to ordering the two points in ∂∆1, and so up to a sign) precisely
∂I1, which is represented by d0 − d1. Hence I1 is a generator as
required.

4.7 Topological Applications

Let’s discuss some topological applications of this computation. First
of all, we have:

Corollary 4.7.1.

• The sphere Sn is not contractible for any n.

• The spheres Sn and Sm are not homotopy equivalent if n ̸= m.

Proof. This is just because we know H∗(Sn) is not isomorphic to the
homology of a point, or to H∗(Sm) when m ̸= n.

Corollary 4.7.2 (Invariance of dimension). The Euclidean spaces Rn and
Rm are not homeomorphic if n ̸= m.

Proof. Suppose ϕ : Rn → Rm is a homeomorphism. Then it restricts
to a homeomorphism Rn \ {0} ∼−→ Rm \ {ϕ(0)}. But the inclusion
i : Sn−1 ↪→ Rn \ {0} is a deformation retract (and so in particular a
homotopy equivalence): we can define a retraction ρ : Rn \ {0} →
Sn−1 by x 7→ x

|x| with homotopy H : Rn \ {0} × I → Rn \ {0} given
by H(x, t) = (1 − t)ρ(x) + tx. Since homotopy equivalence is an
equivalence relation we see that Sn−1 is homotopy equivalent to Sm−1,
contradicting the previous corollary.

Corollary 4.7.3. The inclusion i : Sn−1 ∼= ∂Dn ↪→ Dn does not admit a
retraction.
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Proof. Suppose we had a retraction ρ : Dn → Sn−1, so that ρi = idSn−1 .
Then since homology is functorial we would have H∗(ρ) ◦ H∗(i) =
idH∗(Sn−1). But then in degree n− 1 we’d have composites

Z
Hn−1(ρ)−−−−→ 0

Hn−1(i)−−−−→ Z, (n > 1)

Z⊕Z
H0(ρ)−−−→ Z

H0(i)−−−→ Z⊕Z, (n = 1),

both of which clearly can’t be the identity.

Remark 4.7.4. Note that here we used not just the homology groups
but also the homomorphisms arising from continuous maps.

Corollary 4.7.5 (Brouwer’s fixed point theorem). Any continuous map

Dn f−→ Dn must have a fixed point, i.e. there is some point x ∈ Dn such that
f (x) = x.

Proof. Suppose f does not have a fixed point. Then we can define
ρ : Dn → Dn to take x to the point where the ray from f (x) to x
intersects ∂Dn. This is continuous and if x ∈ ∂Dn then by construction
ρ(x) = x. Thus ρ is a retract of the inclusion ∂Dn ↪→ Dn, contradicting
our previous corollary.

4.8 The Mayer–Vietoris Sequence

Now we’ll derive a variant of the long exact sequence of a pair that
is often more convenient for computations. We start with a purely
algebraic version:

Proposition 4.8.1 (Algebraic Mayer–Vietoris sequence). Consider a
commutative diagram of abelian groups

· · · A′′n+1 A′n An A′′n A′n−1 · · ·

· · · B′′n+1 B′n Bn B′′n B′n−1 · · ·

δn+1

ϕ′′n+1

in

ϕ′n

qn

ϕn ϕ′′n

δn

ϕ′n−1

ϵn+1 jn rn ϵn

such that the rows are long exact sequences and the homomorphisms ϕ′′n are
isomorphisms for all n. Then there is another long exact sequence

· · · → A′n
(in ,ϕ′n)−−−→ An ⊕ B′n

ϕn−jn−−−→ Bn
∆n−→ A′n−1 → · · · ,

where ∆n = δn ◦ (ϕ′′n )−1 ◦ rn.

Proof. We first check composites of successive maps are 0 (or in other
words that at each step the image is contained in the kernel):

• (ϕn − jn) ◦ (in, ϕ′n) = ϕnin − jnϕ′n = 0, since the original diagram
commutes,

• ∆n ◦ (ϕn − jn) = δn(ϕ′′n )
−1rnϕn − δn(ϕ′′n )

−1rn jn = δnqn − 0 = 0,
since δnqn = 0 and rn jn = 0,
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• (in−1, ϕ′n−1) ◦∆n = (in−1δn(ϕ′′n )
−1rn, ϕ′n−1δn(ϕ′′n )

−1rn) = (0, ϵnrn) =

0, since in−1δn = 0 and ϵnrn = 0.

Now to check exactness we must show that at each step the kernel is
contained in the image:

• Take x ∈ Bn with ∆nx = 0. Then (ϕ′′n )
−1rnx is in the kernel

of δn so there exists y ∈ An with qn(y) = (ϕ′′n )
−1rnx, which we

can rewrite as rnϕn(y) = rnx. Hence x − ϕn(y) is in the kernel
of rn, and so there exists z ∈ B′n with jnz = x − ϕn(y). Thus
x = ϕn(y) + jn(z) = (ϕn − jn)(y,−z). Note that the choice of signs in this

exact sequence is somewhat arbitrary,
we could have made other compatible
choices of signs.

• Take (a, b) ∈ An ⊕ B′n with ϕn(a) − jn(b) = 0. Then ϕ′′n qna =

rnϕna = rn jnb = 0, so qna = 0 since ϕ′′n is an isomorphism. This
means there exists x ∈ A′n with a = inx. Then jnb = jnϕ′nx and
so there exists y ∈ B′′n+1 with ϵn+1(y) = b − ϕ′nx. Then x′ :=
x + δn+1(ϕ

′′
n+1)

−1(y) satisfies inx′ = inx + 0 = a and ϕ′nx′ = ϕ′nx +

ϵn+1y = b, as required.

• Take a ∈ A′n−1 with in−1a = 0 and ϕ′n−1a = 0. Then there exists
x ∈ A′′n with a = δnx. Moreover, ϵnϕ′′n x = ϕ′n−1a = 0 so there exists
y ∈ Bn with rny = ϕ′′n x. But then ∆ny = δn(ϕ′′n )

−1rny = δnx = a,
as required.

Now we want to apply this algebraic construction to singular
homology. Consider a topological space X with subspaces A, B ⊆ X
such that A◦ ∪ B◦ = X. We have inclusions

A ∩ B A

B X,

j

j′ i

i′

and so a morphism of pairs ι = (i, j′) : (A, A ∩ B) → (X, B). Then ι For a continuous map f : X → Y we’ll
write f∗ instead of Hn( f ) for the in-
duced map Hn(X) → Hn(Y) when n
is obvious from context, and similarly
for relative homology.

induces isomorphisms in homology H∗(A, A ∩ B) ∼−→ H∗(X, B): we
can apply excision to the subset U = X \ A since our assumptions
imply U = X \ A◦ ⊆ B◦. The long exact sequences for these two pairs
then give a commutative diagram

· · · Hn+1(A, A ∩ B) Hn(A ∩ B) Hn(A) Hn(A, A ∩ B) Hn−1(A ∩ B) · · ·

· · · Hn+1(X, B) Hn(B) Hn(X) Hn(X, B) Hn−1(B) · · · ,

∂

ι∗

j∗

j′∗ i∗ ι∗

∂

j∗

∂ i′∗ ∂

where the rows are exact and the maps ι∗ are isomorphisms. We can
then apply Proposition 4.8.1 to obtain a new long exact sequence:

Corollary 4.8.2 (Mayer–Vietoris sequence). Let X be a topological space
with subspaces A, B ⊆ X such that A◦ ∪ B◦ = X. Then there is a long
exact sequence (called the Mayer–Vietoris sequence)

· · · → Hn(A∩B)
(j∗ ,j′∗)−−−→ Hn(A)⊕Hn(B)

i∗−i′∗−−−→ Hn(X)
∆−→ Hn−1(A∩B)→ · · · ,

where ∆ is the composite

Hn(X)→ Hn(X, B)
(ι∗)−1

−−−→ Hn(A, A ∩ B) ∂−→ Hn−1(A ∩ B).
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Example 4.8.3. Let’s use the Mayer–Vietoris sequence to compute the
homology of the torus T = S1 × S1. If we cut the torus in half we get
two (bent) cylinders, and we can take the subsets A and B to be two
slight thickenings of these, so that they overlap. Then A ∩ B consists
of two disjoint cylinders, so we have We’ll use the notation X ≃ Y for “X is

homotopy equivalent to Y”.

A ≃ S1, B ≃ S1, A ∩ B ≃ S1 ⨿ S1.

The non-zero part of the Mayer–Vietoris sequence is

0→ H2T → H1(S1⨿S1)→ H1S1⊕H1S1 → H1T → H0(S1⨿S1)→ H0(S1)⊕H0(S1)→ H0T → 0,

which using our computation of H∗S1 becomes

0→ H2T → Z⊕Z
α−→ Z⊕Z→ H1T → Z⊕Z

β−→ Z⊕Z→ H0T → 0.

We thus need to understand the two maps α, β : Z⊕Z→ Z⊕Z, for
which we need to be a little careful about orientations. We can think
of the homotopy equivalences A, B ≃ S1 as shrinking each cylinder
to its central cross-section, and the inclusions of the two components
of A ∩ B as the inclusions of the two boundary circles of the cylinder.
We conclude that both maps A ∩ B → A, B are homotopic to the
map S1 ⨿ S1 → S1 given by the identity on each copy of S1. These
induce a homomorphism H∗(S1)⊕ H∗(S1) → H∗(S1) that restricts
to the identity on each copy of H∗(S1), which must be given by
(x, y) 7→ x + y. Thus α and β are both given by (x, y) 7→ (x + y, x + y),
with

ker α = Z(1,−1), coker α = (Z⊕Z)/Z(1, 1) ∼= Z.

We have H2T ∼= ker α ∼= Z, H0T = coker β ∼= Z, and a short exact
sequence

0→ coker α
i−→ H1T

q−→ ker β→ 0.

Since ker β ∼= Z is free, we can choose a splitting by Exercise 4.3, i.e.
a section of q, which gives an isomorphism

H1T ∼= Z⊕Z.

Example 4.8.4. Now let’s consider the Klein bottle K, which can also
be built by gluing two ends of a cylinder together, but with a twist.
We can take A to be an untwisted segment of the cylinder, and B a
neighbourhood of the twist that overlaps A on both sides (then B is
still a cylinder, it’s just been “folded over” itself). The situation is
very similar to what we had for the torus: A ∩ B is again two disjoint
cylinders, and we have

A ∩ B ≃ S1 ⨿ S1, A ≃ S1, B ≃ S1.

The inclusion A ∩ B ↪→ A also still correponds to the map S1 ⨿ S1 →
S1 that’s the identity on each copy of S1. The difference is that
A ∩ B ↪→ B correponds to the map S1 ⨿ S1 → S1 that’s the identity
on one component and an orientation-reversing diffeomorphism on
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the other; we’ll see in the next section that this gives multiplication
by −1 on H1S1. The Mayer–Vietoris sequence again looks like

0→ H2K → Z⊕Z
α−→ Z⊕Z→ H1K → Z⊕Z

β−→ Z⊕Z→ H0K → 0,

but now α is given by (x, y) 7→ (x + y, x − y) while β is as be-
fore (since that only depends on what happens on connected com-
ponents). Thus we now get H2K = ker α = 0 while coker α ∼=
(Z⊕Z)/((1, 1), (1,−1)) ∼= (Z⊕Z)/((1, 1), (2, 0)) ∼= Z/2, so now
the short exact sequence for H1K looks like

0→ Z/2→ H1K → Z→ 0.

We can again choose a splitting since Z is free, giving

H1K ∼= Z⊕Z/2.

Exercise 4.8. Use the Mayer–Vietoris sequence to compute the homology of
the orientable surface Σg of genus g. [Hint: Find a way to induct on g.]

Exercise 4.9. Think of RP2 as the quotient of D2 where we identify x with
−x for x ∈ ∂D2. Compute the homology of RP2 using the Mayer–Vietoris
sequence with A = a neighbourhood of the image of ∂D2 and B = the image
of a smaller disc inside D2. [Assume that the map S1 → S1 that loops around
twice is given on H1(S1) by multiplication by 2.]

Exercise 4.10. The cone on a topological space X is the quotient (X ×
[0, 1])/(X × {0}), and the suspension ΣX of X is the quotient of (X × [0, 1])
where we collapse X× {0} to a point and X× {1} to a different point.

(i) Show that CX is contractible for any X, and that ΣX is the union of two
copies of CX with intersection X.

(ii) Use the Mayer–Vietoris sequence to show that Hn(ΣX) ∼= Hn−1(X) for
n > 1.

(iii) By looking at what happens at the bottom of the Mayer–Vietoris se-
quence, show that H̃n(ΣX) ∼= H̃n−1(X) for all n.

(iv) If X = Sn, convince yourself that ΣSn is homeomorphic to Sn+1. [Think
of the two cones as two “hemispheres” glued along the “equator”.] Use
(iii) to compute H̃∗(Sn) again.

4.9 Degrees

Under the isomorphism π1S1 ∼= Z, the map ℓk : S1 → S1 that loops
around the circle k times (with positive orientation) corresponds to
k ∈ Z; we say that such a loop has winding number k. In this section
we will see that the homomorphism ℓk,∗ : H1S1 → H1S1 is also given
by multiplication by k, and this gives a generalization of the winding
number to continuous maps f : Sn → Sn for any n > 0, the degree of
f :

Definition 4.9.1. We know that HnSn ∼= Z. For a continuous map
f : Sn → Sn (n > 0), the induced homomorphism f∗ : Hn(Sn) →
Hn(Sn) must therefore be given by multiplication with an integer
deg( f ), since this is true for all homomorphisms Z→ Z. This integer
is called the degree of f .
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Here are some easy properties of degrees:

• deg(idSn) = 1 (since idSn ,∗ = idH∗Sn )

• deg(Sn → ∗ → Sn) = 0 (since this factors through Hn(∗) = 0),

• deg(g ◦ f ) = deg(g) · deg( f ) (since (g ◦ f )∗ = g∗ ◦ f∗).

Our first goal is to compute the degree of the restriction to Sn of
an orthogonal linear transformation. This boils down to computing
the degree of a reflection, which we do first for S1:

Lemma 4.9.2. Let r1 : S1 → S1 be an orientation-reversing automorphism
of S1 (which is the restriction of a reflection in a line through the origin if
we view S1 as a subspace of R2). Then

deg(r1) = −1.

Proof. We know from Proposition 4.6.2 that a generator of H1(S1) is
the class represented by the quotient map

q : ∆1 → ∆1/∂∆1 ∼= S1.

Then r1,∗[q] = [r1 ◦ q] corresponds to reversing the orientation of
the 1-simplex q, and we saw in Proposition 3.4.4 that this means
r1,∗[q] = −[q], i.e. deg r1 = −1.

We can generalize this to higher dimensions:

Proposition 4.9.3. Let rn : Sn → Sn (n ≥ 1) be the restriction of the
reflection (x0, . . . , xn) 7→ (−x0, x1 . . . , xn) in Rn+1. Then deg(rn) = −1.

Proof. View Sn as the unit sphere in Rn+1, and let Dn
+ and Dn

− be the
two hemispheres in Sn consisting of points (x0, . . . , xn) with xn ≥ 0
and ≤ 0, respectively. Then rn takes each hemisphere to itself, and
restricts to rn−1 on Sn−1 ∼= Dn

+ ∩ Dn
−. (Strictly speaking we are taking

little open neighbourhoods of these discs.) Then rn gives a map of
Mayer–Vietoris sequences

· · · Hn(Dn
+)⊕ Hn(Dn

−) Hn(Sn) Hn−1(Sn−1) Hn−1(Dn
+)⊕ Hn−1(Dn

−) · · ·

· · · Hn(Dn
+)⊕ Hn(Dn

−) Hn(Sn) Hn−1(Sn−1) Hn−1(Dn
+)⊕ Hn−1(Dn

−) · · ·

rn,∗ rn−1,∗

If n > 1 then Hn(Dn) = Hn−1(Dn) = 0 so we have a commutative
square

Hn(Sn) Hn−1(Sn−1)

Hn(Sn) Hn−1(Sn−1).

∼

rn,∗ rn−1,∗

∼

Hence deg rn = deg rn−1 for n > 1, and hence deg rn = deg r1 =

−1.

Corollary 4.9.4. For any orthogonal matrix A ∈ O(n + 1) (n > 0) the
map α : Sn → Sn obtained by restricting multiplication by A to the unit
sphere satisfies

deg α = det A.
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Proof. Write A as a product of reflections and use that degrees are
compatible with compositions.

Our next goal is to give way to add degrees. For this we need to
think a bit about wedges:

Definition 4.9.5. If (X, x) and (Y, y) are pointed spaces, their wedge
is the pointed space obtained by gluing X and Y together along their
base points. More formally, we have

X ∨Y := (X ⨿Y)/{x, y},

i.e. we take the disjoint union and then identify the two base points.

Remark 4.9.6. The (pointed) inclusions

iX : X ↪→ X ∨Y, iY : Y ↪→ X ∨Y

give a homomorphism

iX,∗ + iY,∗ : H̃∗X⊕ H̃∗Y → H̃∗(X ∨Y),

and we saw in Exercise 4.7 that this is an isomorphism. But we also
have projections

pX : X ∨Y → X, pY : X ∨Y → Y,

where pX sends all of Y to the base point x ∈ X and restricts to the
identity on X, and similarly for pY.

Proposition 4.9.7. The homorphism

(pX,∗, pY,∗) : H̃∗(X ∨Y)→ H̃∗X⊕ H̃∗Y

is an isomorphism, inverse to iX,∗ + iY,∗.

Proof. It suffices to show that the composite (pX,∗, pY,∗) ◦ (iX,∗ + iY,∗)

is the identity, since we already know that (iX,∗ + iY,∗) is an isomor-
phism. For ξ ∈ H̃nX, η ∈ H̃nY, we have

(pX,∗, pY,∗)(iX,∗+ iY,∗)(ξ, η) = (pX,∗, pY,∗)(iX,∗ξ + iY,∗η) = ((pXiX)∗ξ +(pXiY)∗η, (pYiX)∗ξ +(pYiY)∗η).

Now we use that pXiX = idX , pYiY = idY, while pXiY and pYiX are
constant at the base points of X and Y, respectively. Thus pXiY factors
as

X → {x} → X

and so gives zero on reduced homology since H̃∗(∗) = 0, and simi-
larly for pYiX . We then have

(pX,∗, pY,∗)(iX,∗ + iY,∗)(ξ, η) = (ξ, η),

as required.

Corollary 4.9.8. Suppose we have a continuous pointed map ϕ : Z →
X ∨Y. Then under the isomorphism H̃∗(X ∨Y) ∼= H̃∗X⊕ H̃∗Y, the map
ϕ∗ : H̃∗Z → H̃∗(X ∨Y) corresponds to

((pXϕ)∗, (pYϕ)∗) : H̃∗Z → H̃∗X⊕ H̃∗Y.
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Proof. Immediate from functoriality since we know this isomorphism
is given by (pX,∗, pY,∗).

Proposition 4.9.9. Let µ : Sn → Sn ∨ Sn be the map that pinches the
equator to a point. Given pointed maps f , g : Sn → Sn we have a map
( f , g) : Sn ∨ Sn → Sn that does f on one sphere and g on the other. Then

deg(( f , g) ◦ µ) = deg f + deg g.

Proof. Let p1, p2 : Sn ∨ Sn → Sn be the two projection maps that
are given by the identity on one sphere and takes the other to the
base point. As we saw in Corollary 4.9.8, we then have that un-
der the isomorphism H∗(Sn) ⊕ H∗(Sn)

∼−→ H∗(Sn ∨ Sn), the map
µ∗ : H∗(Sn)→ H∗(Sn ∨ Sn) corresponds to

((p1µ)∗, (p2µ)∗) = (id, id) : H∗(Sn)→ H∗(Sn)⊕ H∗(Sn),

since both p1µ and p2µ are homotopic to idSn . Moreover, the map
( f , g)∗ : H∗(Sn ∨ Sn) → H∗(Sn) corresponds under the same iso-
morphism to the map (x, y) 7→ f∗x + g∗y, since we know it re-
stricts to f∗ and g∗ on the two summands. It follows that the map
(( f , g)µ)∗ : H∗(Sn)→ H∗(Sn) is given by

x 7→ f∗x + g∗x,

and so a generator γ ∈ Hn(Sn) is mapped to

f∗γ + g∗γ = deg( f )γ + deg(g)γ = (deg f + deg g)γ,

as required.

Corollary 4.9.10. For any n > 0 and d ∈ Z, there exists a map f : Sn →
Sn of degree d.

Remark 4.9.11. Since homology is homotopy-invariant, if two maps
Sn → Sn are homotopic then they must have the same degree. In fact,
the converse is also true: two maps Sn → Sn are homotopic if and
only if they have the same degree.





5
Cellular Homology

In this chapter we introduce cell complexes (or CW-complexes), which are
spaces built by iteratively gluing on discs along their boundaries. We
will see that this decomposition into discs can be used to define a small
chain complex whose homology, the cellular homology, agrees with
singular homology. We first briefly look at another categorical notion,
that of pushouts in §5.1 before we use this to define cell complexes
in §5.2. We then look at a special case of cell complexes, namely
∆-complexes, which are spaces built by gluing simplices together along
their faces. Such a space can be described by certain combinatorial
data, called a ∆-set; in §5.4 we will see that a ∆-set also determines a
chain complex, and so a notion of homology, called simplicial homology.
We will see that the simplicial homology of a ∆-complex is isomorphic
to its singular homology, but before we can prove this we must first
show, in §5.5 that the homology of a cell complex is determined by
its finite-dimensional subspaces, and then analyze these homology
groups a bit further in §5.6; we are then ready to prove the comparison
result in §5.7. In §5.8 we will see that simplicial homology can
be generalized to the cellular chain complex associated to any cell
complex, and in §5.9 we show that the differential in this chain
complex can be described in terms of the degrees of certain maps of
spheres. Finally, in §5.10 we apply the cellular chains to compute the
homology of the real projective spaces RPn.

5.1 Pushouts

To define cell complexes it is convenient to first define another cate-
gorical notion:

Definition 5.1.1. Let C be a category. Given morphisms f : a → b,
g : a→ c in C, their pushout (if it exists) is the universal commutative
square

a b

c b⨿a c.

f

g
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Thus given any other commutative square

a b

c d.

f

g

there exists a unique morphism b⨿a c→ d such that the diagram

a b

c b⨿a c

d

f

g

∃!

commutes.

Example 5.1.2. In the category Set of sets, the pushout of two mor-
phisms f : S→ T, g : S→ U is the quotient

(T ⨿U)/( f (s) ∼ g(s) : s ∈ S).

Example 5.1.3. In the category Top of topological spaces, the pushout
of two continuous maps f : X → Y, g : X → Z, has as its underlying
set the pushout Y ⨿X Z in Set, with the topology where a subset U is
open if and only if its preimages in Y and Z are both open.

Exercise 5.1. Show that in the category Ab of abelian groups, the pushout of
two homomorphisms f : A→ B, g : A→ C is the cokernel of the homomor-
phism ( f ,−g) : A→ B⊕ C.

Examples 5.1.4.

(i) If X is ∅ then Y ⨿∅ Z is just the disjoint union Y ⨿ Z.

(ii) If A ↪→ X is a subspace then the pushout ∗ ⨿A X along the
unique map A→ ∗ is the quotient X/A.

(iii) The commutative square

Sn Dn+1

Dn+1 Sn+1,

given by the inclusions of Dn+1 as the upper and lower “hemi-
spheres” in Sn+1 and by Sn as the boundary of Dn+1 (so that
the composite Sn → Sn+1 is the inclusion of the “equator”), is
a pushout: the pushout of these two inclusions Sn ↪→ Dn+1 is
built by gluing two (n + 1)-discs together along their boundary.

Remark 5.1.5. In the special case where we have X ↪→ Y a subspace
inclusion and a continuous map f : X → Z, then we say that the
pushout Y ⨿X Z is built by attaching Y to Z along f .

Here are some useful properties of pushouts:
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Exercise 5.2. Consider a commutative diagram

A A′ A′′

B B′ B′′,

in a category C. If the left square is a pushout, then the right square is a
pushout if and only if the outer (composite) square is a pushout.

Exercise 5.3 (Pushouts commute with coproducts). Suppose we have pushout
squares

Ai Bi

Ci Di

for i ∈ I in some category C. If I-indexed coproducts exist in C, then the
canonical square

⨿i∈I Ai ⨿i∈I Bi

⨿i∈I Ci ⨿i∈I Di

is also a pushout. [Hint: Use the universal properties.]

5.2 Cell Complexes

Cell complexes are topological spaces built by attaching discs (which
in this context are called cells) along their boundary — they are spaces
that can be built by a sequence of pushouts of the form

Sn−1 Dn

X X ⨿Sn−1 Dn

or
⨿i∈I Sn−1 ⨿i∈I Dn

X X ⨿⨿ Sn−1 ⨿ Dn.

More precisely, we make the following definition:

Definition 5.2.1. A cell complex (or CW-complex) is a topological space
X equipped with a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆
⋃
n

Xn = X,

a set of continuous maps fα : Sn → Xn, α ∈ Γn, and pushout squares

⨿α∈Γn Sn−1 ⨿α∈Γn Dn

Xn−1 Xn.

( fα)α∈Γn (eα)α∈Γn

The map fα is called the attaching map of the cell α, and the map Thus Xn is built from Xn−1 by attaching
an n-disc along each of the maps fα.eα the characteristic map of α. In addition, X must have the topology

where a subset U ⊆ X is open if and only if U ∩ Xn is open in Xn for
all n.
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Remark 5.2.2. Here we make the convention that S−1 = ∂∆0 = ∅
(since D0 ⊆ R0 is a single point). Thus X0 is built from X−1 = ∅ by
adding a set of points, since we have a pushout

⨿α∈Γ0
∅ ⨿α∈Γ0

∗

X−1 X0.

which exhibits X0 as the discrete set of points Γ0. Next we build X1

by picking out a set of pairs of points in X0, i.e. maps S0 → X0, and
connecting them with intervals, and so forth.

Remark 5.2.3. If X is a cell complex, then U ⊆ X is open (closed) if
and only if for every cell Dn eα−→ Xn ↪→ X, the preimage of U is open
in Dn. This follows by combining the definition of the topology on X
with that of the topology on pushouts and disjoint unions.

Fact 5.2.4. Every cell complex is a Hausdorff space. (See Hatcher, Proposi-
tion A.3 for a proof.)

Fact 5.2.5. Every cell complex is locally contractible (and so in particular
locally path-connected). (See Hatcher, Proposition A.4.)

Definition 5.2.6. A cell complex X is finite-dimensional if X = Xn for
some n, and of finite type if each set Γn of cells is finite (so X has
finitely many cells in each dimension). We say X is finite if it is both
finite-dimensional and of finite type, i.e. if X is built from finitely
many cells.

Remark 5.2.7. It is easy to see that a finite cell complex is compact,
since it is built from finitely many compact spaces, hence a finite cell
complex is a compact Hausdorff space.

Fact 5.2.8. Every compact smooth manifold can be given the structure of a
cell complex.

Remark 5.2.9. A harder result is that every compact topological mani-
fold can be given the structure of a cell complex; this is known in all
dimensions except 4 (which is still open).

Now let’s look at some examples of cell complexes:

Examples 5.2.10.

(1) The n-sphere Sn can be described as the quotient Dn/Sn−1, so we
have a pushout square

Sn−1 Dn

∗ Sn.

This means we can give Sn a cell structure with a single 0-cell and
a single n-cell, so that

(Sn)i =

∗, 0 ≤ i < n,

Sn, i ≥ n.
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(2) Sn is also that pushout Dn ⨿Sn−1 Dn, where two n-discs are glued
together along their boundary. We can rewrite this as a pushout
square

Sn−1 ⨿ Sn−1 Dn ⨿ Dn

Sn−1 Sn.

(id,id)

Combining these pushouts in dimensions up to n, we can give
Sn a cell structure with two i-cells in each dimension ≤ n and
(Sn)i = Si for i ≤ n.

(3) n-dimensional real projective space RPn is the space of lines
through the origin in Rn+1. Since every line intersects the unit
sphere in two antipodal points, we can describe this as the quo-
tient space Sn/(x ∼ −x). Since every point in the upper hemi-
sphere is identified with a single point in the lower hemisphere,
we can equivalently describe RPn as the quotient

Dn/(x ∼ −x : x ∈ ∂Dn).

The resulting map Dn → RPn restricts on the boundary to the
quotient map Sn−1 → RPn−1 and is a homeomorphism away
from the boundary, so that we have a pushout

Sn−1 Dn

RPn−1 RPn.

This allows us to describe RPn as a cell complex with a single cell
in each dimension ≤ n and with (RPn)i = RPi for i ≤ n (where
RP0, the space of lines in R, is a single point).

(4) We can also continue adding cells in this way forever, getting
infinite-dimensional real projective space RP∞ =

⋃
n RPn. This

has a single cell in each dimension, and (RP∞)i = RPi for all i.

(5) n-dimensional complex projective space CPn is the space of com-
plex lines through the origin (or 1-dimensional sub-vector spaces)
in Cn+1. Such a line intersects the unit sphere in Cn+1 in a copy
of the unit complex numbers, which is homeomorpic to S1. Thus

CPn ∼= S2n+1/(x ∼ λx : λ ∈ C, |λ| = 1)

We can define a map D2n → CPn by taking (z0, . . . , zn−1) ∈ D2n

(zi ∈ C) to (z0 : z1 : · · · : zn−1 : 1−
(
∑i |zi|2

)1/2
) in CPn. This

is a homeomorphism away from the boundary, and takes ∂D2n

to the subspace of CPn where the last projective coordinate is
0. This subspace is a copy of CPn−1, and the restricted map
∂D2n → CPn−1 is exactly the quotient map, so that we have a
pushout

S2n−1 D2n

CPn−1 CPn.
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Thus CPn has a cell structure with a single cell in each even
dimensional ≤ 2n, and

(CPn)i =

CPi/2, i even,

CP(i−1)/2 i odd.

We can also keep going and define infinite-dimensional complex
projective space CP∞ =

⋃
n CPn. This has a cell structure with a

single cell in every even dimension.

Definition 5.2.11. A relative cell complex (X, A) is a subspace pair (i.e.
A ⊆ X) with a filtration

A = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆
⋃
n

Xn = X,

a set of continuous maps fα : Sn → Xn, α ∈ Γn, and pushout squares

⨿α∈Γn Sn ⨿α∈Γn Dn

Xn Xn+1.

( fα)α∈Γn (eα)α∈Γn

X must have the topology where a subset U ⊆ X is open if and only
if U ∩ Xn is open in Xn for all n ≥ −1. (So it’s the same as a cell
complex except that we start with A, rather than with ∅, i.e. X is built
from A by attaching cells.)

Fact 5.2.12. A relative cell complex is a good pair. (See Hatcher, Proposition
A.5 for a proof.)

Example 5.2.13. If X is a cell complex, then (X, Xn) and (Xn, Xn−k)

are relative cell complexes, and so in particular good pairs.

5.3 ∆-Sets and ∆-Complexes

In this section we will look at a special case of cell complexes, called
∆-complexes, which are built by gluing together simplices along their
faces. These cell structures can be described by the following entirely
combinatorial data:

Definition 5.3.1. A ∆-set S is a collection of sets Sn (n = 0, 1, . . .) A more “grown-up” name for ∆-sets is
semisimplicial sets, because they have part
of the structure of certain objects called
simplicial sets.

together with face maps ∂i : Sn → Sn−1 (i = 0, . . . , n) satisfying the
simplicial identity,

∂j∂i = ∂i−1∂j

for 0 ≤ j < i ≤ n + 1.

Example 5.3.2. If X is a topological space, the singular simplices
Singn(X) together with the face maps between them form a ∆-set
Sing(X).

We think of a ∆-set S as a recipe for building a topological space
out of simplices: we take an n-simplex ∆n for every element s of Sn

and glue its ith face to the (n− 1)-simplex corresponding to ∂is. More
precisely, we have the following definition:
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Definition 5.3.3. Let S be a ∆-set. The geometric realization |S| is
defined inductively as follows: Starting with |S|−1 = ∅ we will define
topological spaces |S|n with |S|n−1 ⊆ |S|n and maps eσ : ∆n → |S|n
for every σ ∈ Sn, such that for every σ and 0 ≤ i ≤ n we have a
commutative square Informally, we define |S|n+1 by gluing

on an (n + 1)-simplex for every σ ∈
Sn+1 such that the boundary matches
with the boundary of σ in Sn.∆n−1 ∆n

|S|n−1 |S|n.

di

e∂iσ eσ

Given this, for every σ ∈ Sn+1 we can define a map ∂eσ : ∂∆n+1 → |S|n
by defining ∂eσ to be given by e∂iσ on the ith face ∂i∆n; this makes
sense because these maps agree on the n − 1-simplices where the
faces overlap since we have

e∂iσ ◦ dj = e∂j∂iσ = e∂i−1∂jσ = e∂jσ ◦ di−1

when j < i. Then we define |S|n+1 and eσ for σ ∈ Sn+1 by the pushout

⨿σ∈Sn+1
∂∆n+1 ⨿σ∈Sn+1

∆n+1

|S|n |S|n+1.

⨿σ ∂eσ ⨿σ eσ

We then take |S| = ⋃
n |S|n, with the topology where a subset is open

if and only if its intersection with |S|n is open for all n.

Remark 5.3.4. Since (Dn, ∂Dn) ∼= (∆n, ∂∆n), the construction of |S|
tautologically makes this space a cell complex with an n-cell for every
element of Sn.

Remark 5.3.5. The geometric realization |S| can also be defined “all
at once” as the topological space(

∞

⨿
n=0

Sn × ∆n

)
/ ∼,

where ∼ is the relation generated by (s, di p) ∼ (∂is, p) for s ∈ Sn, p ∈
∆n−1. This is a more convenient description for some purposes, but
we will not prove here that it is equivalent to ours as this is best done
using a bit more category theory than we have covered.

Definition 5.3.6. A ∆-complex is a topological space X together with a
∆-set S and a homeomorphism X ∼= |S|.

Thus giving a topological space X the structure of a ∆-complex
amounts to specifying a way to build X by gluing together simplices;
this can also be viewed as a special kind of cell structure.

Examples 5.3.7.

(i) We can build the circle S1 by taking a point and a 1-simplex and
gluing both ends of the 1-simplex to the point. More precisely
we consider the ∆-set S with S0 = {p}, S1 = {x}, Sn = ∅ for
n > 1, with ∂ix = p (i = 0, 1).
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(ii) We can build the sphere S2 by taking two 2-simplices and gluing
them together along the boundary. This corresponds to the ∆-
set S with S0 = {[0], [1], [2]}, S1 = {[01], [12], [02]}, S2 = {U, L}
where ∂0[ij] = [j], ∂1[ij] = [i], and ∂iU = ∂iL = [jk] where
i ̸= j, k.

(iii) We can build the torus by taking a square and gluing opposite
edges together:

If we add the diagonal, we get a description of the torus as
a ∆-complex with two 2-simplices, three 1-simplices and one
0-simplex:

p pa

p pa

b b
d

U

L

Here

∂0U = a, ∂1U = d, ∂2U = b,

∂0L = b, ∂1L = d, ∂2L = a.

Definition 5.3.8. If S, T are ∆-sets, then a morphism of ∆-sets f : S→ T
consists of functions fn : Sn → Tn such that the squares

Sn Tn

Sn−1 Tn−1

fn

∂i ∂i
fn−1

commute for all n, i. We write Set∆ for the category whose objects are
∆-sets and whose morphisms are morphisms of ∆-sets.

Exercise 5.4. Show that a morphism of ∆-sets f : S→ T induces a canonical
continuous map | f | : |S| → |T| between geometric realizations such that for
every σ ∈ Sn the triangle

∆n

|S| |T|

eσ
e f (σ)

| f |

commutes. Check that this makes |–| a functor Set∆ → Top.
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5.4 Simplicial Homology

Definition 5.4.1. Let S be a ∆-set. Then we can define a chain complex
C•(S) as follows: The group Cn(S) is the free abelian group ZSn, and
the boundary map Cn(S)→ Cn−1(S) is given by

∂ =
n

∑
i=0

(−1)i∂i.

This satisfies ∂2 = 0 by the same proof as for the singular chain com-
plex. We write Hn(S) := Hn(C•(S)) for the corresponding homology
groups.

We can think of the homology groups Hn(S) as “a” simplicial
homology of the topological space |S|.

Example 5.4.2. Let X be a topological space. Then the singular chain
complex S•X is the same as C•(Sing(X)) using the singular ∆-set we
defined above.

Examples 5.4.3. Let’s compute the homology of the three ∆-complexes
from Examples 5.3.7.

(i) Let S be the ∆-set describing S1, then

C0S = Zp, C1S = Zx, CnS = 0, n ̸= 0, 1.

We have ∂x = p− p = 0, so this chain complex looks like

· · · → 0→ Z
0−→ Z→ 0→ · · · ,

and we get

H∗(S) =

Z, ∗ = 0, 1,

0, otherwise.

(ii) Let S be the ∆-set describing S2, then

C0S = Z{[0], [1], [2]}, C1S = Z{[01], [02], [12]}, C2S = Z{U, L}, CnS = 0, n > 2

with ∂[ij] = [j]− [i] and

∂U = ∂L = [12]− [02] + [01].

Thus B0S is generated by [1]− [0], [2]− [0], [2]− [1] and so H0S
is Z, generated by any of the three 0-simplices, which are iden-
tified in the quotient. We also see that Z2S is generated by
U − L so that H2S ∼= Z, generated by this chain. (Note that
geometrically U − L represents the entire sphere, with the signs
giving the correct orientation.) Finally we need to compute Z1S:
suppose a[01] + b[02] + c[12] is in Z1, then

∂(a[01] + b[02] + c[12]) = (a− c)[1] + (b + c)[2]− (a + b)[0] = 0

which forces a = c, b = −c, so that Z1S is generated by the single
cycle [01]− [02] + [12] which is ∂U = ∂L, so that Z1S = B1S and
H1S = 0. Thus

H∗S =

Z, n = 0, 2,

0, otherwise.
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(iii) Let S be the ∆-set describing the torus, then

C0S = Zp, C1S = Z{a, b, d}, C2S = Z{U, L}, CnS = 0, n > 2.

We have ∂a = ∂b = ∂d = p− p = 0, and

∂U = d− b + a, ∂L = a− b + d.

Thus B0S = 0 and H0S ∼= Z, while H2S ∼= Z2S ∼= Z, generated
by U − L. Moreover Z1S = C1S while B1S is generated by the
single chain a− b + d. Thus

H1S ∼= Z{a, b, d}/(a− b + d) ∼= Z⊕Z.

In summary,

H∗S =


Z, n = 0, 2,

Z⊕Z, n = 1,

0, otherwise.

Exercise 5.5. The combinatorial n-simplex is the ∆-set ∆n
comb with (∆n

comb)k
being the set of subsets of {0, . . . , n} of size k + 1; it is convenient to label
these as [i0 · · · ik] with 0 ≤ i0 ≤ i1 ≤ · · · ≤ ik ≤ n. Then the face map
∂j : (∆n

comb)k → (∆n
comb)k−1 is given by

[i0 · · · ik] 7→ [i0 · · · ij−1ij+1 · · · ik].

The boundary of ∆n
comb is the ∆-set ∂∆n

comb obtained by removing the single
n-simplex [01 · · · n], so that

(∂∆n
comb)k =

{
(∆n

comb)k, 0 ≤ k ≤ n− 1,

∅, k ≥ n,

with the same face maps in degrees < n.

(i) Convince yourself that |∆n
comb| is homeomorphic to ∆n and |∂∆n

comb| to
the boundary of ∆n.

(ii) Compute the simplicial homology of the ∆-sets ∆3
comb and ∂∆3

comb. [The
space |∂∆3

comb| is a tetrahedron, which is topologically a sphere, so the
result should agree with the usual homology of the sphere.]

Remark 5.4.4. C• is a functor Set∆ → Ch, by the same argument as
for S• above. As part of that proof we also essentially showed that
Sing is a functor Top→ Set∆. It follows that simplicial homology is a
functor

H∗ : Set∆
C•−→ Ch

H∗−→ grAb,

while singular homology decomposes as the composite of functors

Top
Sing−−→ Set∆

C•−→ Ch
H∗−→ grAb.

Definition 5.4.5. Let S be a ∆-set. Then there is a canonical morphism
of ∆-sets S→ Sing |S|, which takes s ∈ Sn to the inclusion es : ∆n →
|S| of the simplex labelled by s. This is a morphism of ∆-sets since
from the definition of es we see that ∂is maps to

e∂is = es ◦ di = ∂ies.

This gives a canonical chain map C•S → S•|S| and so a homomor-
phism H∗S→ H∗|S|.
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We will prove that this homomorphism of homology groups is
always an isomorphism, i.e.

Hn(S) ∼= Hn(|S|).

Thus it was not a coincidence that the simplicial homology groups we
computed in Examples 5.4.3 were the same as the singular homology
groups of S1, S2, and the torus. This gives us one recipe for computing
the homology of a topological space X:

(1) Find a combinatorial description of X by decomposing it into
simplices, i.e. find a ∆-set S such that |S| ∼= X.

(2) Try to compute the simplicial homology H∗S as ZnS/BnS; if
we’re lucky, we can choose S so that C•S is very small, and this is
actually feasible.

Remark 5.4.6. If X is a topological space, there is also a canonical con-
tinuous map | Sing(X)| → X, which is determined by commutative
diagrams

∆n | Sing X|

X,

eσ

σ

i.e. on the simplex labelled by σ we use the map σ to get to X. If X is
a reasonable space, then this map actually turns out to be a homotopy
equivalence; this means that in a sense the ∆-set Sing X knows all the
homotopy-invariant information about X.

5.5 Homology of Sequential Colimits

We are going to prove that simplicial and singular homology agree. In
order to do this, we first need to understand the relation between the
homology of a ∆-complex X ∼= |S| and the spaces |S|n in its filtration,
which we may as well do for a general cell complex. For this it is
convenient to introduce another categorical construction:

Definition 5.5.1. Let C be a category and suppose we have a sequence

X0
f0−→ X1

f1−→ X2
···−→

of morphisms fi : Xi → Xi+1 in C. The colimit of the sequence (if it
exists) is an object X together with maps ξi : Xi → X such that the
triangles

Xi Xi+1

X

fi

ξi

ξi+1

commute (i.e. we have ξi = ξi+1 ◦ fi for all i), and with the universal
property that given any other family of maps gi : Xi → Y such that
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gi = gi+1 fi there exists a unique map g : X → Y such that g ◦ ξi = gi:

X0 X1 X2 · · ·

X

Y.

ξ0

g0

f0

ξ1

g1

f1

ξ2

g2 ∃!g

Examples 5.5.2.

(i) In Set, the colimit colimn Xn as above is given by the quotient(
⨿

n
Xn

)
/ ∼,

where ∼ is the equivalence relation generated by x ∼ fix for
x ∈ Xi, with ξi : Xi → colimn Xn given as the composite

Xi ↪→⨿
n

Xn →
(

⨿
n

Xn

)
/ ∼

of the inclusion of the factor Xi in the coproduct and the quotient
map.

(ii) In Top, the colimit colimn Xn is the colimit in Set with the quo-
tient topology, which is here the topology where U ⊆ colimn Xn

is open if and only if ξ−1
i (U) is open in Xi for all i.

(iii) In Ab, the colimit colimn Xn is the quotient(⊕
n

Xn

)
/A

where A is the subgroup generated by ιkx− ιk+1 fkx for x ∈ Xk,
where ιk is the inclusion Xk ↪→

⊕
n Xn.

(iv) In Ch, the colimit colimn Xn is given by the degreewise col-
imit in Ab, i.e. (colimn Xn)k

∼= colimn Xn,k, with differential
(colimn Xn)k → (colimn Xn)k−1 the unique homomorphism such
that the squares

Xi,k colimn Xn,k

Xi,k−1 colimn Xn,k−1

∂ ∂

commute (which exists since the maps Xi → Xi+1 are chain
maps).

Exercise 5.6.
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(i) Suppose we have subsets

S0 ⊆ S1 ⊆ S2 ⊆ · · · .

Show that the union
⋃∞

n=0 Sn is isomorphic to the sequential colimit of
the inclusions Sn ↪→ Sn+1.

(ii) Suppose we have subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · .

Show that the union
⋃∞

n=0 Xn is homeomorphic to the sequential colimit
of the continuous inclusions Xn ↪→ Xn+1 if we give the union the
topology where a subspace U ⊆ ⋃∞

n=0 Xn is open if and only if U ∩ Xn
is open in Xn for all n.

(iii) Also check the analogous statement for abelian groups.

Exercise 5.7. Suppose we have a sequence

X0
f0−→ X1

f1−→ X2
···−→

of morphisms fi : Xi → Xi+1 in a category C such that fi is an isomorphism
for all i ≥ N. Show that then XN is a colimit of the sequence. [Hint: We
have compatible isomorphisms XN

∼−→ Xi for i > N, inverting these we
get compatible morphisms Xi → XN for all N. Now check the universal
property.]

Exercise 5.8. Show that the free abelian group functor Z(–) : Set → Ab

preserves sequential colimits.

Given Exercise 5.6 we can think of sequential colimits as a general-
ization of unions. This is convenient because there are functors that
preserve sequential colimits but do not preserve unions (because they
don’t preserve injections). In particular, this is true for homology as a
functor H∗ : Ch→ Ab, which we’ll see in the next pair of exercises:

Exercise 5.9. Given a diagram of abelian groups

A0
f0−→ A1 → · · · ,

and subgroups Bi ↪→ Ai such that fi(Bi) ⊆ Bi+1, show that there is a canonical
isomorphism

colimi Ai/Bi ∼= (colimi Ai) / (colimi Bi) .

Exercise 5.10. Suppose we have C• ∼= colimn Cn,•. Show that

Zk(C) ∼= colimn Zk(Cn), Bk(C) ∼= colimn Bk(Cn),

and conclude using the previous exercise that

Hk(C) ∼= colimn Hk(Cn).

We now want to apply this to singular homology. However, it is
not true in general that the functor S• preserves sequential colimits.
Nevertheless, this is true with some hypotheses on the diagram in
question, which do hold for the cellular filtration of a cell complex.
The key technical point is the following:

Proposition 5.5.3. Suppose K is a compact Hausdorff space and there exists
a sequence of closed inclusions

K0 ↪→ K1 ↪→ · · · ↪→ K =
∞⋃

i=0

Ki

such that a subset U ⊆ K is open if and only if U ∩ Kn is open in Kn for all
n. Then we must have K = Kn for some finite n.
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This proof uses a lot of point-set topol-
ogy we don’t otherwise need in the
course.

Proof. Since K is compact Hausdorff, points are closed, and the sub-
spaces Kn are also compact Hausdorff since they are closed in K. If
Kn ⊊ K for all n, then we can choose points xn ∈ Kn \ Kn−1. Set
S = {x1, x2, . . .}. Then S ∩ Kn is finite for all n, hence closed in Kn,
which implies S is closed in K. The same argument shows any sub-
set of S is closed, so S has the discrete topology. But then S is not
compact, contradicting it being a closed subset of the compact space
K.

Corollary 5.5.4. Suppose X is a Hausdorff space and we are given an
increasing sequence of subspaces

X0 ↪→ X1 ↪→ · · · ↪→ X =
∞⋃

i=1

Xi

such that

• Xi ↪→ Xi+1 is a closed inclusion for all i,

• a subset U of X is open if and only if U ∩ Xi is open in Xi for all i.

If C is a compact space, then any continuous map f : C → X factors through
Xn for some n, so that we have

HomTop(C, X) ∼=
∞⋃

n=0
HomTop(C, Xn).

Proof. For f : C → X, the subspace f (C) is a compact subset of X, and
hence a compact Hausdorff space. We can then apply Proposition 5.5.3
to the filtration f (C) ∩ Xi and conclude that f (C) = f (C) ∩ Xn for
some n, i.e. f (C) ⊆ Xn. Since HomTop(C, Xn)→ HomTop(C, X) is an
injection for all n (with image those continuous maps whose image
lies in Xn), the induced map

colimn HomTop(C, Xn)→ HomTop(C, X)

is injective (with image those maps whose image lies in Xn for some
n). We have just shown that this map is also surjective, and hence an
isomorphism.

Since the simplices ∆n are compact for all n, as a special case we
have:

Corollary 5.5.5. For X as in Corollary 5.5.4, we have

Singn(X) =
∞⋃

i=0

Singn(Xi)

for all n = 0, 1, . . ..

Corollary 5.5.6. Suppose X is a Hausdorff space and we are given an
increasing sequence of subspaces

X1 ↪→ X2 ↪→ · · · ↪→ X =
∞⋃

i=1

Xi

such that
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• Xi ↪→ Xi+1 is a closed inclusion for all i,

• a subset U of X is open if and only if U ∩ Xi is open in Xi for all i.

Then we have
H∗(X) ∼= colimi H∗(Xi).

Proof. From Exercise 5.8 and Corollary 5.5.5 we have

S•(X) ∼= colimi S•(Xi).

Now Exercise 5.10 gives the corresponding isomorphism in homology.

As a special case, we get:

Corollary 5.5.7. Let X be a cell complex. Then we have

H∗(X) ∼= colimn H∗(Xn)

for all ∗ = 0, 1, . . ..

5.6 Homology of Cell Complexes

If X is a cell complex, Corollary 5.5.7 tells us that we can extract
the homology of X from the homology of the subspaces Xn. In this
section we will compute the relative homology of the pairs (Xn, Xn−1)

and use this together with the long exact sequence for this pair to
extract more information about the homology of X.

Proposition 5.6.1. Let X be a cell complex. Then

Xn/Xn−1
∼=

∨
α∈Γn

Sn.

Proof. Consider the commutative diagram

⨿α∈Γn Sn−1 ⨿α∈Γn Dn

Xn−1 Xn

∗ Xn/Xn−1.

Here both squares are pushouts, so by Exercise 5.2 the composite
square

⨿α∈Γn Sn−1 ⨿α∈Γn Dn

∗ Xn/Xn−1

is also a pushout. We can expand to a diagram

⨿α∈Γn Sn−1 ⨿α∈Γn Dn

⨿α∈Γn ∗ ⨿α∈Γn Dn/Sn−1

∗ Xn/Xn−1,
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where the top square is a pushout by Exercise 5.3. Applying Exer-
cise 5.2 again we conclude that the bottom square is a pushout. But
this means Xn/Xn−1 is homeomorphic to

∨
α∈Γn

Dn/Sn−1 :=

(
⨿

α∈Γn

Dn/Sn−1

)
/

(
⨿

α∈Γn

∗
)

,

as required.

Remark 5.6.2. Let X be a cell complex. Since (Xn, Xn−1) is a good
pair by Fact 5.2.12, it follows that we have isomorphisms

H∗(Xn, Xn−1) ∼= H̃∗(
∨

α∈Γn

Sn) ∼=

ZΓn, ∗ = n,

0, ∗ ̸= n.

These groups show up in the long exact sequence for the pair
(Xn, Xn−1):

· · · → Hk+1(Xn, Xn−1)→ Hk(Xn−1)→ Hk(Xn)→ Hk(Xn, Xn−1)→ · · ·

We have segments of the form

0→ Hk(Xn−1)→ Hk(Xn)→ 0, (k ̸= n, n− 1)

0→ Hn(Xn−1)→ Hn(Xn)→ ZΓn

ZΓn → Hn−1(Xn−1)→ Hn−1(Xn)→ 0.

In particular, we see that Hk(Xn−1) ∼= Hk(Xn) if k ̸= n, n− 1.
Let’s consider what this means for the groups Hk(Xn) with k fixed

as we vary n:

• For n = −1 we have Hk(X−1) = Hk(∅) = 0.

• For n < k we have

Hk(Xn) ∼= Hk(Xn−1) ∼= · · · ∼= Hk(X−1) = 0.

• For n = k we have the exact sequence (as we know Hk(Xk−1) = 0)

0→ Hk(Xk)→ ZΓk.

Thus Hk(Xk) is a subgroup of the free group ZΓk and hence is
itself a free abelian group.

• For n = k + 1 we have the exact sequence

ZΓk+1 → Hk(Xk)→ Hk(Xk+1)→ 0,

which exhibits Hk(Xk+1) as a quotient of Hk(Xk).

• For n > k + 1 we have

Hk(Xn) ∼= Hk(Xn−1) ∼= · · · ∼= Hk(Xk+1).
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Moreover, we know from Corollary 5.5.7 that Hk(X) is the sequential
colimit of the groups Hk(Xn) as n goes to ∞; since these groups
stabilize at n = k + 1, applying Exercise 5.7 this means that we also
have

Hk(X) ∼= Hk(Xk+1).

To summarize, we have shown:

Proposition 5.6.3. For X a cell complex, we have

Hk(Xn) = 0, n < k,

Hk(Xn) = Hk(X), n > k.

As a special case, we see:

Corollary 5.6.4. If X is a d-dimensional cell complex, so that X = Xd, then
Hk(X) = Hk(Xd) = 0 if k > d.

5.7 Singular and Simplicial Homology

Now we can return to the comparison of singular and simplicial
homology. If S is a ∆-set, recall that we defined a canonical morphism
of ∆-sets S → Sing |S| and so a chain map C•S → S•|S|, which we
want to prove gives an isomorphism HnS ∼−→ Hn|S| in homology.

Definition 5.7.1. Let S be a ∆-set. The n-skeleton skn S is the ∆-set
given by

(skn S)k =

Sk, k ≤ n,

∅, k > n.

This gives a filtration of S by sub-∆-sets

sk0 S ⊆ sk1 S ⊆ sk2 S ⊆ S =
∞⋃

n=0
skn S.

Since skn S has no k-simplices for k > n, it is clear from the defini-
tions that

| skn S| ∼= |S|n,

so that the cellular filtration on |S| is the image of the skeletal filtration
of S under geometric realization.

By Exercise 5.8 and the description of sequential colimits in Ch we
see that

C•(S) ∼= colimn C•(skn S).

Hence from Exercise 5.10 we have an isomorphism

H∗(S) ∼= colimn H∗(skn S),

compatible with the isomorphism

H∗(|S|) ∼= colimn H∗(| skn S|),

from Corollary 5.5.7. It is therefore enough to show that the canonical
map H∗(skn S) → H∗(| skn S|) is an isomorphism for each n. We
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want to prove this by induction on n (we already know the case n = 0
since | sk0 S| is the discrete set S0). Set

C•(skn S, skn−1 S) := C•(skn S)/C•(skn−1 S),

then we have a commutative diagram of chain complexes

0 C•(skn−1 S) C•(skn S) C•(skn S, skn−1 S) 0

0 S•(| skn−1 S|) S•(| skn S|) S•(| skn S|, | skn−1 S|) 0

where the rows are short exact sequences. From this we get a commu-
tative diagram of homology long exact sequences from Exercise 4.4:

· · · Hi+1(skn S, skn−1 S) Hi(skn−1 S) Hi(skn S) Hi(skn S, skn−1 S) Hi−1(skn−1 S) · · ·

· · · Hi+1(| skn S|, | skn−1 S|) Hi(| skn−1 S|) Hi(| skn S|) Hi(| skn S|, | skn−1 S|) Hi−1(| skn−1 S|) · · ·

∂ ∂

∂ ∂

Suppose we already know that H∗(skn−1 S) → H∗(| skn−1 S|) is an
isomorphism. The chain complex C•(skn S, skn−1 S) is very simple: it
has ZSn in degree n and 0 everywhere else, so

H∗(skn S, skn−1 S) =

ZSn, ∗ = n,

0, otherwise.

By Remark 5.6.2 this is the same as the relative singular homology
H∗(| skn S|, | skn−1 S|). If we can show that the map between the two
is an isomorphism, we could then apply 5-Lemma to conclude that
H∗(skn S)→ H∗(| skn S|) must be an isomorphism too.

Unwinding the definitions, the map

Hn(skn S, skn−1 S)→ Hn(| skn S|, | skn−1 S|)

takes s ∈ Sn to the homology class represented by the composite

∆n es−→ | skn S| → | skn S|/| skn−1 S| ∼=
∨

s∈Sn

Sn,

where es is the inclusion of the n-simplex labelled by s. This factors
through

∆n → ∆n/∂∆n ∼= Sn →
∨

s∈Sn

Sn

where the last map is the inclusion of the sphere labelled by s. But
we know from Proposition 4.6.2 that the quotient map ∆n → ∆n/∂∆n

is a generator of Hn(Sn). Hence the map we’re looking at takes
generators to generators and so is an isomorphism. In conclusion, we
have proved:

Theorem 5.7.2. Let S be a ∆-set. Then the canonical map S → Sing |S|
induces an isomorphism

H∗(S)
∼−→ H∗(|S|)

between the simplicial and singular homology of |S|.
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5.8 Cellular Chains

We can exploit the long exact sequences we have been looking at
further to obtain a new method for computing homology of cell
complexes in general, not just for ∆-complexes.

Definition 5.8.1. Let X be a cell complex with Γn its set of n-cells.
The group of cellular n-chains is the free abelian group

Ccell
n (X) := Hn(Xn, Xn−1) ∼= ZΓn.

The differential d : Ccell
n (X)→ Ccell

n−1(X) is the composite

Hn(Xn, Xn−1)
∂−→ Hn−1(Xn−1)

jn−1−−→ Hn−1(Xn−1, Xn−2),

where ∂ is the boundary map for the pair (Xn, Xn−1) and the second
comes from the map of pairs (Xn−1, ∅)→ (Xn−1, Xn−2).

Remark 5.8.2. Note that the two maps we are composing appear in
two different long exact sequences: ∂ occurs in the long exact sequence
for (Xn, Xn−1) while jn−1 occurs in that for (Xn−1, Xn−2).

Remark 5.8.3. The map jn : Hn(Xn)→ Hn(Xn, Xn−1) that appears in
the definition of d is injective: the preceding term in the long exact
sequence for (Xn, Xn−1) is Hn(Xn−1) = 0.

Lemma 5.8.4. d2 = 0, so that (Ccell
• (X), d) is a chain complex.

Proof. The map d2 : Ccell
n (X)→ Ccell

n−2(X) is the composite

Hn(Xn, Xn−1)
∂−→ Hn−1(Xn−1)

jn−1−−→ Hn−1(Xn−1, Xn−2)
∂−→ Hn−2(Xn−2)

jn−2−−→ Hn−2(Xn−2, Xn−3).

Here the two middle maps are adjacent in the long exact sequence
for (Xn−1, Xn−2) and so their composite is 0.

Proposition 5.8.5. The homology of the cellular chain complex of X is the
homology of X, i.e. there are isomorphisms

H∗(Ccell
• (X), d) ∼= H∗(X).

Proof. We compute the cycles and boundaries in the cellular chain
complex:

Zcell
n (X) = ker(d : Ccell

n (X)→ Ccell
n−1(X))

∼= ker(∂ : Hn(Xn, Xn−1)→ Hn−1(Xn−1)) (jn−1 injective)
∼= im(jn : Hn(Xn)→ Hn(Xn, Xn−1)) (by exactness)
∼= Hn(Xn) (jn injective)

Bcell
n (X) = im(d : Ccell

n+1(X)→ Ccell
n (X))

∼= im(∂ : Hn+1(Xn+1, Xn)→ Hn(Xn)) (jn injective)

Thus the homology group Hn(Ccell(X), d) = Zcell
n (X)/Bcell

n (X) is iso-
morphic (via the injective map jn) to Hn(Xn)/(im ∂). But in the long
exact sequence for (Xn+1, Xn) we have

Hn+1(Xn+1, Xn)
∂−→ Hn(Xn)→ Hn(Xn+1)→ 0
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(since Hn(Xn+1, Xn) = 0), so that this quotient is isomorphic to
Hn(Xn+1) ∼= Hn(X), as required.

Corollary 5.8.6. If X has a cell structure with only even-dimensional cells,
then

H∗(X) ∼= Ccell
∗ (X) =

ZΓ∗, ∗ even,

0, ∗ odd.

Proof. In this case every other group in Ccell
∗ (X) vanishes, so that

the differentials must all be zero. Thus Zcell
∗ (X) = Ccell

∗ (X) and
Bcell
∗ (X) = 0.

Example 5.8.7. We saw that complex projective space CPn has a cell
structure with a single cell in every even dimension ≤ 2n. Hence we
get

H∗(CPn) ∼=

Z, 0 ≤ ∗ ≤ 2n even,

0, otherwise.

Similarly, we have

H∗(CP∞) ∼=

Z, 0 ≤ ∗ even,

0, otherwise.

5.9 The Cellular Differential

To do more computations we need a better understanding of the differ-
ential in the cellular chain complex. This was defined as the composite
of two maps, the first being the boundary map ∂ : Hn(Xn, Xn−1) →
Hn−1(Xn−1). Here the cell structure provides a pushout square

⨿α∈Γn Sn−1 ⨿α∈Γn Dn

Xn−1 Xn.

( fα)α∈Γn (eα)α∈Γn

Since the boundary map is natural, the map of pairs (⨿ Dn, ⨿ Sn−1)→
(Xn, Xn−1) gives a commutative square

Hn(⨿ Dn, ⨿ Sn−1) Hn−1(⨿ Sn−1)

Hn(Xn, Xn−1) Hn−1(Xn−1).

∂

∼ Hn−1(( fα)α∈Γn )

∂

For n > 1, the boundary map Hn(⨿ Dn, ⨿ Sn−1) → Hn−1(⨿ Sn−1)

is an isomorphism (since the two neighbouring terms in the long
exact sequence are homology groups of Dn in dimensions ̸= 0). Thus
to understand the boundary map to Hn−1(Xn−1) it’s equivalent to
understand the map Hn−1(( fα)α∈Γn) induced by the attaching maps
fα : Sn−1 → Xn−1.
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The second step in the boundary map is the map jn−1 : Hn−1(Xn−1)→
Hn−1(Xn−1, Xn−2), which we can also (since n− 1 > 0) think of as
the map in homology induced by the quotient map

π : Xn−1 → Xn−1/Xn−2 ∼=
∨

Γn−1

Sn−1.

We conclude that d : Ccell
n (X) → Ccell

n−1(X) corresponds under appro-
priate isomorphisms to the map on Hn−1 induced by the composite

⨿
Γn

Sn−1 ( fα)α∈Γn−−−−→ Xn−1
π−→

∨
Γn−1

Sn−1,

i.e. d is given by

ZΓn ∼=
⊕
Γn

Hn−1(Sn−1) ∼= Hn−1

(
⨿
Γn

Sn−1

)
→ Hn−1(Xn−1)→ H̃n−1

 ∨
Γn−1

Sn−1

 ∼=⊕
H̃n−1(Sn−1) ∼= ZΓn−1.

We can isolate the effect on a single generator in Γn by restricting to
the corresponding sphere in the coproduct, giving the composite map

Sn−1 fα−→ Xn−1
π−→

∨
β∈Γn−1

Sn−1.

In homology, the generalization of Corollary 4.9.8 to an arbitrary
wedge implies that the resulting map Hn−1(Sn−1)→ ⊕

β∈Γn−1
Hn−1(Sn−1)

takes x ∈ Hn−1(Sn−1) to ∑β(pβπ fα)∗x, where pβ :
∨

Sn−1 → Sn−1 is
the projection that takes the copy of Sn−1 corresponding to β to Sn−1

by the identity and collapses all the other copies to the base point.
If we write qβ := pβπ : Xn−1 → Sn−1 (which we can also think of

as the quotient Xn−1/(Xn−1 \ eβ(Dn,◦)) where we collapse everything
outside the interior of the cell β to a single point), then this means d
is a sum of the maps Hn−1(qβ fα) : Hn−1(Sn−1)→ Hn−1(Sn−1).

Then we have proved the following:

Proposition 5.9.1. The cellular differential d : ZΓn → ZΓn−1 takes the
generator α ∈ ZΓn to

d(α) = ∑
β∈Γn−1

deg(qβ fα)β

if n > 1.

Remark 5.9.2. For n = 1, the cellular differential is just the boundary
map

H1(X1, X0)→ H0(X0).

Here the map of pairs (⨿Γ1
D1, ⨿Γ1

S0)→ (X1, X0) gives a commuta-
tive square ⊕

Γ1
H1(D1, S0)

⊕
Γ1

H0(S0)

H1(X1, X0) H0(X0).

∼

We know that the boundary map H1(D1, S0) → H0(S0) takes the
generator represented by the relative cycle idD1 to the difference
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[1]− [0] if these are the generators of H0S0 corresponding to the two
points of S0. The generator in H1(X1, X0) ∼= ZΓ1 corresponding to
α ∈ Γ1 is then sent to fα(1)− fα(0) in H0(X0) ∼= ZΓ0 for fα : S0 → X0

the corresponding attaching map, so that

dα = fα(1)− fα(0).

Remark 5.9.3. Since Sn−1 is compact, fα(Sn−1) can only intersect the
interiors of finitely many (n− 1)-cells, hence only finitely many of
these degrees can be non-zero.

Exercise 5.11. Compute the cellular homology of Sn using the cell structure
with two cells in each dimension ≤ n. [You need to keep track of the
orientations of the generators. There are two ways to define this cell structure:
either attach both cells using the identity, or attach one cell using the identity
and one using an orientation-reversing map; it may be instructive to look at
both.]

Exercise 5.12. Find a cell structure on the torus and compute the cellular
homology.

Exercise 5.13. By the classification of finitely generated abelian groups, we
can write any finitely generated abelian group A as a direct sum Zr ⊕ T
where T is a torsion group (i.e. all its elements have finite order). The integer
r is called the rank rk A of A. If C• is a chain complex such that Cn is a finitely
generated abelian group for all n, and vanishes except for finitely many n,
then the Euler characteristic of C• is

χ(C•) = ∑
i
(−1)i rk Ci.

(i) Show that
χ(C•) = ∑

i
(−1)i rk Hi(C).

[Assume that rank is additive in short exact sequences: if 0 → A →
B → C → 0 is a short exact sequence of finitely generated abelian
groups, then rk B = rk A + rk C.]

(ii) If X is a finite cell complex with Γn its set of of n-cells, the Euler
characteristic of X is the alternating sum

χ(X) = ∑
i
(−1)i|Γn|.

Prove that χ(X) is independent of the cell structure of X, and only
depends on X up to homotopy equivalence.

5.10 The Homology of RPn

Using our earlier results on degrees, we can now compute the homol-
ogy of real projective space RPn. Recall that this has a cell structure
with a single cell en in each dimension ≤ n, with attaching map the
quotient map

fi : Si−1 → Si−1/(x ∼ −x) ∼= RPi−1.

But we have to be careful here: when we form the pushout square

Si−1 Di

RPi−1 RPi

fi ei



algebraic topology i 87

we are thinking of RPi as the quotient of Di where we identify x with
−x for x ∈ ∂Di. To form the next step in the filtration we need to
identify this quotient with the quotient of Si where we identify all x
with −x — and there are two natural ways to do this: we can map
Si to the quotient of Di by identifying the interior of one hemisphere
with the interior Di and by first composing with x 7→ −x on the other
hemisphere — but we have to choose on which hemisphere we do
what. This gives two possible quotient maps q1, q2 : Si → RPi, related
by q1 = q2 ◦ invi where invi : Si → Si is the inversion map x 7→ −x.
To precisely define the cell structure we must (arbitrarily) choose The degree of invi on Si is det(−Ii+1) =

(−1)i+1 by Corollary 4.9.4 (where Ii+1 is
the identity matrix in dimension i + 1),
so if i is even the map invi is definitely
not homotopic to id.

which map to use as fi+1, though these choices will not affect the
computation.

The cellular chain complex looks like

· · · → 0→ Zen → Zen−1 → · · · → Ze0.

We need to compute d(ei), which for i > 1 is given by the degree of
the composite map

g : Si−1 fi−→ RPi−1 → RPi−1/RPi−2 ∼−→ Si−1.

The quotient map fi takes the equator in Si−1 to RPi−2 so we can
factor g as

Si−1 µ−→ Si−1 ∨ Si−1 g′−→ Si−1,

where µ is the map that collapses the equator to a point. From
our choice of fi we know that on one hemisphere it restricts to the
quotient map Di−1/∂Di−1 → Si−1, and on the other it is this quotient
composed with the antipodal map invi−1 : Si−1 → Si−1.

By Proposition 4.9.9 this means that deg g = deg(id)+deg(invi−1).
Moreover, by Corollary 4.9.4 we also know that deg(invi−1) = (−1)i,
so that

deg g = 1 + (−1)i =

0, i odd,

2, i even.

Thus Ccell
∗ (RPn) looks like

0→ Z→ · · · → Z
0−→ Z

2−→ Z
0−→ Z.

Here the lowest differential is just the boundary map H1(RP1, RP0)→
H0(RP0) where RP1 ∼= S1 and RP0 = ∗, which is zero, for example
since it takes a generator of H̃1(S1) to its boundary, which is 0.

Computing the homology of this chain complex, we get:

Proposition 5.10.1. Hi(RPn) ∼=


Z/2, i odd, i < n,

0, i even > 0 or i > n,

Z, i = 0 or i = n odd.





6
Homotopy Invariance and Excision

Having convinced ourselves that the Eilenberg–Steenrod axioms are
useful for computing homology, we now proceed to prove that they
are indeed satisfied for singular homology. Recall that the two prop-
erties we need to establish are homotopy invariance and excision. We
start by considering homotopy invariance; the proof of this has two
ingredients, which we first introduce separately: in §6.1 we consider
the (somewhat) geometric construction of exterior products of singular
chains, and in §6.2 we look at the algebraic notion of chain homotopies.
We then put these together in §6.3 to prove that singular homology is
homotopy-invariant. Next we turn to excision: In §6.4 we reduce the
proof of excision to a locality property of singular chains, and in §6.5
we establish this using the barycentric subdivision of singular chains.

6.1 Exterior Product of Singular Chains

One ingredient in the proof of homotopy-invariance is a definition
of “multiplication” of singular chains, which we will introduce first.
These will be maps

µn,m : Sn(X)× Sm(Y)→ Sn+m(X×Y).

The idea for defining µn,m is that given singular simplices σ : ∆n → X
and τ : ∆m → Y, we have σ× τ : ∆n × ∆m → X× X′. This is of course
not an (n + m)-simplex (if n, m ̸= 0). However, we can certainly
decompose the product ∆n × ∆m into (n + m)-simplices, and if we pick
some reasonable way of doing this (using maps αi : ∆n+m → ∆n×∆m)
then we can take µn,m(σ, τ) to be the chain on X × Y given by the
sum ∑i ±(σ× τ) ◦ αi of the restrictions of σ× τ to these simplices,
perhaps with some signs to get the correct orientations. The precise
result we want is the following:

Theorem 6.1.1. For topological spaces X, Y there exist bilinear maps

Sn(X)× Sm(Y)
µn,m−−→ Sn+m(X×Y),

such that

(i) µn,m is natural, i.e. for maps f : X → X′, g : Y → Y′, we have

µn,m( f∗σ, g∗τ) = ( f × g)∗µn,m(σ, τ).
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(ii) ∂ is a derivation for µ, i.e. we have

∂µn,m(σ, τ) = µn−1,m(∂σ, τ) + (−1)nµn,m−1(σ, ∂τ)

(where we interpret µ−1,m and µm,−1 as 0 if n = 0 or m = 0).

(iii) For m = 0, σ : ∆n → X and x : ∆0 ∼= ∗ → Y, µn,0(σ, x) is the
n-simplex

∆n ∼= ∆n × ∆0 σ×x−−→ Y×Y′,

and similarly for n = 0.

Remark 6.1.2. If µn,m(σ, τ) represents the product of σ and τ as a
chain, then ∂µn,m(σ, τ) should represent the oriented boundary of
σ × τ. This boundary is ∂σ × τ ∪ σ × ∂τ, which explains the two
terms in the formula for ∂µn,m; the sign is needed to get the correct
orientations. For example, the boundary of ∆1 × ∆1 we can represent
as the chain

∂(∆1 × ∆1) = [00→ 10] + [10→ 11]− [01→ 11]− [00→ 01]

= ∆1 × [0] + [1]× ∆1 − ∆1 × [1]− [0]× ∆1

= ([1]− [0])× ∆1 − ∆1 × ([1]− [0])

= ∂∆1 × ∆1 + (−1)1∆1 × ∂∆1.

Exercise 6.1. Show that the exterior product µn,m induces bilinear maps in
homology Hn(X)× Hm(Y)→ Hn+m(X×Y).

Let ιn ∈ Sn(∆n) denote the singular n-simplex corresponding to the
identity of ∆n. Then for σ : ∆n → X any singular simplex, we have the
tautologous identity σ = σ∗ιn. But then if we set ιn,m := µn,m(ιn, ιm),
the naturality property of µn,m means that if µn,m exists it must satisfy

µn,m(σ, τ) = µn,m(σ∗ιn, τ∗ιm) = (σ× τ)∗ιn,m

for any σ ∈ Singn(X), τ ∈ Singm(Y); if σ and τ are chains we can
similarly represent µn,m(σ, τ) as a linear combination of terms of this
form. Thus µn,m is completely determined by ιn,m. Thus to define
µn,m is suffices to construct chains ιn,m with properties that imply
those in Theorem 6.1.1:

Proposition 6.1.3. For all n, m there exists a chain ιn,m ∈ Sn+m(∆n×∆m)

such that

(i) ∂ιn,m = ∑n
i=0(−1)i(di× id)∗ιn−1,m +(−1)n ∑m

j=0(−1)j(id× dj)∗ιn,m−1

(where we interpret ι−1,m and ιn,−1 as 0 if n = 0 or m = 0)

(ii) ι0,m = ιm and ιn,0 = ιn.

Remark 6.1.4. Here the formula for ∂ιn,m comes from the requirement

∂µn,m(ιn, ιm) = µn−1,m(∂ιn, ιm) + (−1)nµn,m−1(ιn, ∂ιm),

since we must have

µn−1,m(∂ιn, ιm) =
n

∑
i=0

(−1)iµn−1,m(∂iιn, ιm)

=
n

∑
i=0

(−1)iµn−1,m(di
∗ιn−1, ιm)

=
n

∑
i=0

(−1)i(di × id)∗ιn−1,m,
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and similarly for the other term. We can also think of this as a
geometric decomposition of the oriented boundary of ∆n × ∆m into
(faces of ∆n)×∆m and ∆n×(faces of ∆m).

Proof of Theorem 6.1.1. Given ιn,m as in Proposition 6.1.3, we define

µn,m : Singn(X)× Singm(Y)→ Sn+m(X×Y)

as (σ, τ) 7→ (σ× τ)∗ιn,m, and extend linearly to a map on Sn(X)×
Sm(Y). By linearity it suffices to check the required properties for
σ : ∆n → X and τ : ∆m → Y. For f : X → X′, g : Y → Y′ we have

µn,m( f∗σ, g∗τ) = µn,m( f ◦σ, g ◦ τ) = (( f ◦σ)× (g ◦ τ))∗ιn,m = ( f × g)∗(σ× τ)∗ιn,m = ( f × g)∗µn,m(σ, τ).

For the boundary, we get

∂µn,m(σ, τ) = ∂(σ× τ)∗ιn,m

= (σ× τ)∗∂ιn,m

= (σ× τ)∗

(
n

∑
i=0

(−1)i(di × id)∗ιn−1,m + (−1)n
m

∑
j=0

(−1)j(id× dj)∗ιn,m−1

)

=
n

∑
i=0

(−1)i(σdi × τ)∗ιn−1,m + (−1)n
m

∑
j=0

(−1)j(σ× τdj)∗ιn,m−1

=
n

∑
i=0

(−1)iµn−1,m(∂iσ, τ) + (−1)n
m

∑
j=0

(−1)jµn,m−1(σ, ∂jτ)

= µn−1,m(∂σ, τ) + (−1)nµn,m−1(σ, ∂τ).

Finally, for m = 0 we have

µn,0(σ, x) = (σ× x)∗ιn,0 = (σ× x)∗ιn,

as required, and similarly for n = 0.

We’ll first give a concrete proof of Proposition 6.1.3 in the case
n = 1 (which is all we need for homotopy invariance). This will
use an explicit decomposition of the cylinder ∆1 × ∆m; a proof for
general n can be obtained by similarly decomposing ∆n × ∆m but
this unsurprisingly gets more complicated. Alternatively, there is an
abstract proof that shows that appropriate classes ιn,m exist without
giving any explicit choice thereof.

Concrete proof of Proposition 6.1.3, n = 1. We label the vertices of ∆1 ×
∆n as [i] = ([0], [i]) and [ı] = ([1], [i]) and denote the face with vertices The face means the polygon with these

vertices, i.e. their convex hull in ∆1 × ∆n

(which is embedded in Rn+3).
v1, . . . , vn as [v1 · · · vn].

Define Ri,n : ∆n+1 → ∆1×∆n as the inclusion of the face [0 · · · iı · · · n]
(so we repeat the vertex i in both the lower and upper copy of ∆n).
This satisfies:

∂jRi,n =


(id× dj)∗Ri−1,n−1, j < i (both give the face [0 · · · (j− 1)(j + 1) · · · iı · · · n])
∂iRi−1,n, j = i (both give the face [0 · · · · · · (i− 1)ı · · · n])
∂i+1Ri+1,n, j = i + 1 (both give the face [0 · · · i(i + 1) · · · n])
(id× dj−1)∗Ri,n−1, j > i + 1 (both give the face [0 · · · iı · · · (j− 2)ȷ · · · n])



92 rune haugseng

If we set ι1,n := ∑n
i=0(−1)iRi,n, then we get

∂ι1,n =
n

∑
i=0

(−1)i∂Ri,n

=
n

∑
i=0

n+1

∑
j=0

(−1)i+j∂jRi,n

= ∑
0≤j<i≤n

(−1)i+j(id× dj)∗Ri−1,n−1

+
n

∑
i=0

(−1)2i∂iRi,n +
n

∑
i=0

(−1)2i+1∂i+1Ri,n

+ ∑
0≤i≤n

i+1<j≤n+1

(−1)i+j(id× dj−1)∗Ri,n−1

= ∑
0≤j≤i<n

(−1)i+j+1(id× dj)∗Ri,n−1

+ ∂0R0,n +
n

∑
i=1

∂iRi,n −
n−1

∑
i=0

∂i+1Ri,n − ∂n+1Rn,n

+ ∑
0≤i<j≤n

(−1)i+j+1(id× dj)∗Ri,n−1

= ∂0R0,n − ∂n+1Rn,n −
n−1

∑
i=0

n

∑
j=0

(−1)i+j(id× dj)∗Ri,n−1

= (d0 × id)∗ι0,n − (d1 × id)∗ι0,n −
n

∑
j=0

(−1)j(id× dj)∗ι1,n−1,

as required.

Abstract proof of Proposition 6.1.3. We’ll see below in Exercise 6.4 that
H̃∗(∆n) = 0, without assuming homotopy invariance. Thus if σ ∈ The idea of this proof is called the

“method of acyclic models”, the “acyclic
model” being S•(∆n); we will encounter
this again several times further on in the
course.

Sk(∆n) for k > 0 is a cycle, it must also be a boundary. This means
that to show there exists some chain with a prescribed boundary it’s
enough to show that this hypothetical boundary is a cycle. We can
apply this to inductively choose chains ιn+m as the degree n + m
increases: supposing we have found ιk,l for all k, l with k + l < n + m,
then we want ιn,m (for n, m > 0) to be a chain whose boundary is

n

∑
i=0

(−1)i(di × id)∗ιn−1,m + (−1)n
m

∑
j=0

(−1)j(id× dj)∗ιn,m−1.

To show such a chain exists, we just need to check this is a cycle,
which we leave as an exercise.

Exercise 6.2. Suppose the formula

∂ιk,l =
k

∑
i=0

(−1)i(di × id)∗ιk−1,l + (−1)k
l

∑
j=0

(−1)j(id× dj)∗ιk,l−1

holds for ιn−1,m and ιn,m−1. Show that then the chain

n

∑
i=0

(−1)i(di × id)∗ιn−1,m + (−1)n
m

∑
j=0

(−1)j(id× dj)∗ιn,m−1

is a cycle.
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Warning 6.1.5. Note that the chains ιn,m in Proposition 6.1.3 are not
unique, and hence neither are the maps µn,m. However, one can show
that all choices give the same maps in homology.

Remark 6.1.6. We can also define exterior products of relative singular
chains: Given pairs (X, A) and (Y, B) we can define a map

µn,m : Sn(X, A)× Sm(Y, B)→ Sn+m(X×Y, X× B ∪ A×Y)

by taking µn,m([σ], [τ]) to be the image of µn,m(σ, τ). This is well-
defined: for α ∈ Sn(A) and β ∈ Sm(B) we have

µn,m(σ + α, τ + β) = µn,m(σ, τ) + µn,m(α, τ) + µn,m(σ, β) + µn,m(α, β),

where all but the first term lie in Sn+m(X × B ∪ A × Y). Hence
[µn,m(σ + α, τ + β)] = [µn,m(σ, τ)] in Sn+m(X×Y, X× B ∪ A×Y).

6.2 Chain Homotopies

The other ingredient in the proof of homotopy invariance is an al-
gebraic notion of homotopy, namely chain homotopies between chain
maps.

Definition 6.2.1. Let f , g : A• → B• be two chain maps. A chain
homotopy h from f to g consists of homomorphisms hn : An−1 → Bn

for every n, such that

fn(a)− gn(a) = ∂hn+1(a) + hn(∂a). (6.1)

We say that two chain maps are (chain) homotopic if there exists a chain
homotopy between them.

Exercise 6.3.

(i) Show that being chain homotopic is an equivalence relation on the set
of chain maps A• → B•.

(ii) Show the chain homotopies are compatible with compositions: if
f , g : A• → B• are chain homotopic, then so are ϕ f and ϕg for any chain
map ϕ : B• → B′•, and likewise for f ψ and gψ for any ψ : A′• → A•.

(iii) Define the homotopy category of chain complexes, where the objects are
chain complexes and the set of morphisms from A• to B• is the set of
chain homotopy classes of chain maps.

Remark 6.2.2. If a is a cycle (∂a = 0) then the chain homotopy gives
f (a) − g(b) = ∂hn(a), exhibiting the two cycles f (a) and g(a) as
agreeing up to a specified boundary. We should think of this as an
algebraic analogue of a homotopy in topology: just as a homotopy
between continuous maps f , g : X → Y species a path from f (x) to
g(x) for all x, a chain homotopy between f , g : A• → B• specifies an
algebraic “path” between f (a) and g(a) in the form of a boundary.
We will see later (after we’ve talked about tensor products) that we
can reformulate the definition of chain homotopy in a way that makes
the two notions look more similar than they do currently. To justify
the preicse form of (6.1) note that for a boundary ∂a we must have

f (∂a)− g(∂a) = ∂hn(∂a)
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but the left-hand side is also ∂( f (a)− g(a)) so it is natural that the
term hn(∂a) appear.

Proposition 6.2.3. If f , g : A• → B• are homotopic chain maps, then the
induced maps in homology are the same, i.e.

Hn( f ) = Hn(g) : Hn(A)→ Hn(B).

Proof. If h is a chain homotopy from f to g, then for a homology class
[a] represented by a cycle a, we have

fn(a)− gn(a) = ∂hn+1(a)

since ∂a = 0, and so

Hn( f )[a] = [ fn(a)] = [gn(a) + ∂hn+1(a)] = [gn(a)] = Hn(g)[a].

Definition 6.2.4. A chain map f : A• → B• is a chain homotopy equiv-
alence if there exists a chain map g : B• → A• such that g f is chain
homotopic to idA• and f g is chain homotopic to idB• ; g is then called
a chain homotopy inverse of f .

By the same argument as in Remark 4.4.5, we have:

Corollary 6.2.5. if f : A• → B• is a chain homotopy equivalence with
chain homotopy inverse g, then f∗ : H∗(A) → H∗(B) is an isomorphism
with inverse g∗.

In other words, homology takes chain homotopy equivalences to
isomorphisms, i.e. chain homotopy equivalences are quasi-isomorphisms
in the following sense:

Definition 6.2.6. A chain map f : A• → B• is a quasi-isomorphism if
the induced map in homology

f∗ : H∗(A)→ H∗(B)

is an isomorphism of graded abelian groups.

6.3 Proof of Homotopy Invariance

We are now ready to prove homotopy invariance of singular homology.
Recall that what we want to prove is the following:

Theorem 6.3.1. If f , g : (X, A) → (Y, B) are homotopic maps of pairs,
then the induced maps on singular homology agree, i.e.

f∗ = g∗ : Hn(X, A)→ Hn(Y, B).

We will deduce this from Proposition 6.2.3, so what we’ll actually
prove is the following:

Proposition 6.3.2. If f , g : (X, A)→ (Y, B) are homotopic maps of pairs,
then the induced maps on singular chains

f∗, g∗ : S•(X, A)→ S•(Y, B)

are chain homotopic.
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Proof. We’ll show that any homotopy of pairs h : X×∆1 → Y induces
a chain homotopy. To do so we use the exterior multiplication maps
(extended to relative chains as in Remark 6.1.6)

µ1,m : S1(∆1)× Sm(X, A)→ Sm+1(∆1 × X, ∆1 × A).

These satisfy ∂µ1,m(σ, τ) = µ0,m(∂σ, τ)− µ1,m−1(σ, ∂τ). In particular,
we can take σ to be the chain ι1 corresponding to the identity of ∆1,
with ∂ι1 = [1]− [0]. If we define νm+1(τ) := µ1,m(ι1, τ) then we get

∂νm+1(τ) = {1} × τ − {0} × τ − νm(∂τ),

where we used property (iii) in Theorem 6.1.1 to identify µ0,m(∂ι1, τ).
Since h is a homotopy of pairs, we can think of it as a map of pairs

(∆1×X, ∆1× A)→ (Y, B) and so it induces a chain map h∗ : S•(∆1×
X, ∆1 × A) → S•(Y, B). Then the composites h∗νm : Sm(X, A) →
Sm+1(Y, B) give a chain homotopy: we have

∂h∗νm+1(τ) = g∗(τ)− f∗(τ)− h∗νm(∂τ),

which is precisely the identity required of a chain homotopy between
g∗ and f∗.

6.4 Locality and Excision

Our next goal is to prove the excision property for singular homology:

Theorem 6.4.1. Let (X, A) be a subspace pair and U ⊆ A a subspace such
that U ⊆ A◦. Then the inclusion (X \U, A \U) ↪→ (X, A) induces an
isomorphism in homology

H∗(X \U, A \U)
∼−→ H∗(X, A).

It is notationally convenient to formulate this slightly differently: if
B := X \U then the condition is that A◦ ∪ B◦ = X so that the interiors
of A and B form an open cover of X, and in this case the inclusion
(B, A ∩ B) ↪→ (X, A) should induce an isomorphism

H∗(B, A ∩ B) ∼−→ H∗(X, A).

A key ingredient in the proof is the locality property of singular ho-
mology, which essentially says that to compute the homology of X it
is enough to look only at simplices whose images are contained in
either A or B. We will now formulate this more precisely, and then
use it to prove excision; we will give the proof of locality in the next
section.

Definition 6.4.2. A chain γ ∈ Sn(X) is called small (with respect to
the cover {A, B}) if it is a linear combination of simplices σ : ∆n → X
such that the image σ(∆n) is contained either in A or in B. The small
chains form a subgroup of Sn(X) which we denote S′n(X). Since the
boundary of small chain is clearly again small, we get a subcomplex
S′•(X) ⊆ S•(X). The subcomplex S•(A) is contained in S′•(X), and
we define S′•(X, A) as the quotient S′•(X)/S•(A).
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Theorem 6.4.3 (Locality). The inclusion S′•(X)→ S•(X) induces isomor-
phisms in homology.

Remark 6.4.4. More generally, we can define small chains with respect
to any open cover, and the analogue of Theorem 6.4.3 still holds.

We have a commutative square of chain complexes

S•(A ∩ B) S•(B)

S•(A) S′•(X),

where all four maps are injective; in particular, there is an induced
map of quotient complexes

S•(B, A ∩ B)→ S′•(X, A).

Lemma 6.4.5. The chain map S•(B, A ∩ B) → S′•(X, A) is an isomor-
phism.

Proof. We need to check we have an isomorphism Sn(B, A ∩ B) ∼−→
S′n(X, A) for every n. To see that this is injective, suppose [α] ∈
Sn(B, A ∩ B) is in the kernel, where α is a representative in Sn(B).
Then when we view α as an element in S′n(X) it maps to 0 in S′n(X, A),
which means it is in the image of Sn(A). But then the chain α lies
in both Sn(A) and Sn(B), which means it is a linear combination of
simplices whose images lie in both A and B, and hence in A ∩ B, i.e.
α lies in the subgroup Sn(A ∩ B). This implies [α] = 0 in Sn(B, A ∩ B)
as required.

To see that the map is surjective, consider [γ] ∈ S′n(X, A), repre-
sented by γ ∈ S′n(X). Since γ is small, we can write it as a sum
γ = α + β where α ∈ Sn(A) and β ∈ Sn(B). But then [γ] = [β] in
S′n(X) and here [β] is in the image of Sn(B, A ∩ B).

Proof of Theorem 6.4.1. From the inclusions S•(A) ⊆ S′•(X) ⊆ S•(X)

we get a canonical morphism of quotient complexes S′•(X, A) →
S•(X, A), which lives in a commutative diagram

0 S•(A) S′•(X) S′•(X, A) 0

0 S•(A) S•(X) S•(X, A) 0

where the rows are short exact sequences. We get an associated
diagram of long exact sequences in homology:

· · · Hn(A) Hn(S′•(X)) Hn(S′•(X, A)) Hn−1(A) Hn−1(S′•(X)) · · ·

· · · Hn(A) Hn(X) Hn(X, A) Hn−1(A) Hn−1(X) · · ·

∼ ∼

Here the isomorphisms follow from Theorem 6.4.3. We can then
apply the 5-Lemma to conclude that Hn(S′•(X, A))→ Hn(X, A) is an
isomorphism.



algebraic topology i 97

The chain map S•(B, A ∩ B)→ S•(X, A) factors as

S•(B, A ∩ B)→ S′•(X, A)→ S•(X, A),

where the first map is an isomorphism by Lemma 6.4.5, and we just
saw the second induces isomorphisms in homology.

6.5 Barycentric Subdivision

We now want to prove the locality property, Theorem 6.4.3. To do so
we will use a construction called barycentric subdivision. This will give
as natural chain maps

bsX : S•(X)→ S•(X)

and a chain homotopy ρX from bsX to the identity, i.e.

bsX(α)− α = ∂ρX(α) + ρX(∂α)

(where we drop the superscript X from the notation when it is clear
from context). These will have the following key properties:

(1) for every chain α ∈ S•(X) there exists an integer k such that
bsn(X) is small for n ≥ k.

(2) for every small chain α the chain ρ(α) is also small.

Before we turn to the definition, let’s see that this suffices to prove
locality:

Proof of Theorem 6.4.3. We must show that the homomorphism

Hn(S′•(X))→ Hn(X)

is an isomorphism for every n. To see that it is surjective, consider
a class [α] ∈ Hn(X) represented by a cycle α ∈ Sn(X). The chain
homotopy ρ implies that [α] = [bs(α)] and so [α] = [bsk(α)] for
every k, and by assumption bsk(α) is small for k sufficiently large,
so [α] is in the image of Hn(S′•(X)). To see that the map is injective,
suppose [α] = 0 in Hn(X) for some α ∈ S′n(X). Then α = ∂β where
β ∈ Sn+1(X) need not be small. But then bsk(α) = ∂ bsk(β) and for k
sufficiently large we know bsk(β) is also small, so [bsk(α)] = 0 also
in Hn(S′•(X)). Moreover, property (2) implies that ρ restricts to a
chain homotopy between bs and the identity also on S′•(X), so that
[α] = [bsk(α)] also holds in Hn(S′•(X)). Thus [α] = 0 also here, as
required.

Now we need to show such maps bsX and ρX actually exist. To
define bsX we will use the following procedure:

• Define a chain βn ∈ Sn(∆n); this will be bs∆n
(ιn) where ιn ∈ Sn(∆n)

denotes the chain corresponding to the identity map id∆n .

• For σ : ∆n → X, define bsX(σ) := σ∗βn, and extend linearly to
define bsX on chains.
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The chain βn will represent a subdivision of ∆n into smaller simplices,
the barycentric subdivision, i.e. it will be a (signed) sum of the inclu-
sions ∆n ↪→ ∆n of these smaller simplices; geometrically this chain
represents all of ∆n.

Roughly speaking, the barycentric subdivision of ∆n is obtained
by first taking the subdivision of the faces of ∆n and then adding a
new vertex at the “barycentre” (or centre of mass) of ∆n, with edges
connecting this to all the vertices in the subdivision of the boundary,
and so on for higher-dimensional faces.

To give a more precise definition, we introduce the cone construction
of simplices:

Definition 6.5.1. Suppose K ⊆ Rd is a convex set (so for any points
x, y ∈ K, the line segment between x and y is also contained in K).
Given a singular simplex α : ∆n → K and a point p ∈ K we define
conep α : ∆n+1 → K to be the continuous map given by

conep(α)(t0, . . . , tn+1) =

t0 p + (1− t0)α(t′0, . . . , t′n) t0 ̸= 1,

p, t0 = 1,

where t′i = ti+1/(1− t0) (so that (t′0, . . . , t′n) lies in ∆n ⊆ Rn+1) We
can extend this linearly to obtain a homomorphism

conep : Sn(K)→ Sn+1(K).

Lemma 6.5.2. ∂ conep(α) = α− conep(∂α).

Proof. From the definition we see that if α : ∆n → K is a simplex, then
∂0 conep α = α, while ∂i conep α = conep(∂i−1α) for i > 0. Hence

∂ conep(α) =
n+1

∑
i=0

(−1)i∂i conep(α) = α−
n

∑
i=0

(−1)i conep(∂iα),

where the sum is precisely conep(∂α).

Exercise 6.4. Use the cone construction to show directly (without using
homotopy invariance) that for any convex subset K ⊆ Rn we have H∗(K) = 0,
∗ > 0.

Definition 6.5.3. Viewing ∆n ⊆ Rn+1 as the subset of points t =

(t0, . . . , tn) with ti ≥ 0 and ∑i ti = 1, the barycenter of ∆n is the
point z = (1/(n + 1), . . . , 1/(n + 1)). We inductively define classes
βn ∈ Sn(∆n) and homomorphisms bsX

n : Sn(X)→ Sn(X) as follows:

• set β0 := ι0,

• given βn, for σ : ∆n → X define bsX
n (σ) := σ∗βn and extend linearly

in σ,

• set βn+1 := conez(bsn(∂ιn+1)).

Note that this gives bsX
0 := id.
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Lemma 6.5.4. bsX : S•(X)→ S•(X) is a chain map, and it is natural in
X, i.e. given a continuous map f : X → Y we have a commutative square

S•(X) S•(X)

S•(Y) S•(Y).

bsX

f∗ f∗

bsY

Proof. To prove naturality it suffices to check that the two maps agree
at a simplex σ : ∆n → X. We have

f∗ bsX(σ) = f∗(σ∗βn) = ( f σ)∗βn = bsY( f∗σ),

as required. We now prove that bsX is a chain map for all X by
checking that ∂ bsX

n = bsX
n−1 ∂ by induction on n. For σ : ∆n → X we

have

∂ bsX
n (σ) = ∂σ∗βn = σ∗(∂βn),

and Lemma 6.5.2 gives

∂βn = ∂ conez(bs∆n

n−1 ∂ιn) = bs∆n

n−1 ∂ιn − conez(∂ bs∆n

n−1 ∂ιn).

Applying the inductive hypothesis to bs∆n

n−1, we see that the last term
vanishes and so ∂βn = bs∆n

n−1 ∂ιn, which means

∂ bsX
n (σ) = σ∗(bs∆n

n−1 ∂ιn) = bsX
n−1(σ∗∂ιn) = bsX

n−1(∂σ).

To start the induction, note that as bsX
0 = id, for n = 1 we get

∂β1 = ∂ι1 + conez(∂2ι1) = bs0(∂ι1).

Fact 6.5.5. If (Y, d) is a compact metric space and U = {Ui : i ∈ I} is
an open cover of Y, then there exists λ > 0 such that any subset of Y of
diameter < λ lies in one of the subsets Ui. Such a λ is called a Lebesgue
number of U. For a proof, you could try the Wikipedia

article on “Lebesgue’s number lemma”.

Lemma 6.5.6. (bsX)kα is small for k sufficiently large.

Proof. It’s enough to consider a simplex α : ∆n → X. Then α−1 A◦ and
α−1B◦ give an open cover of ∆n. This is a compact metric space, so
there exists a Lebesgue number λ. But from the definition of bs∆n

n
we see that there is a real number ϵ < 1 such that the simplices in
(bs∆n

n )k(ιn) all have diameter < ϵk. For k sufficiently large we have
ϵk < λ and so each simplex in the chain (bs∆n

n )k(ιn) is contained in one
of the open sets in the cover. In other words, (bsX)kα = α∗(bs∆n

n )k(ιn)

is small.

Now we want to define the chain homotopy ρX
n : SnX → Sn+1X.

We proceed by the same method as before:

• we first define a chain Rn ∈ Sn+1(∆n) that will be ρ∆n
n (ιn), starting

with taking R0 ∈ S1(∆0) to be the unique simplex ∆1 → ∆0,

• for σ : ∆n → X we set ρX
n (σ) := σ∗Rn and extend linearly in σ.
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For ρX
n to be a chain homotopy between bsX and id we certainly need

∂Rn = ∂ρ∆n

n (ιn) = −ρn−1(∂ιn) + bs∆n

n ιn − ιn.

In fact any Rn with this property will give a chain homotopy:

Lemma 6.5.7. Given chains Rn with the prescribed boundaries, the resulting
homomorphisms ρX

n are a natural chain homotopy.

The proof is similar to that of Lemma 6.5.4 and is left as an exercise:

Exercise 6.5. Suppose we have chains Rn ∈ Sn+1(∆n) with R0 the unique
simplex ∆1 → ∆0, and define ρX

n : Sn(X) → Sn+1(X) by ρX
n (σ) := σ∗Rn for

σ : ∆n → X and extending linearly in σ. Show (by induction on n) that if the
chains Rn satisfy

∂Rn = −ρn−1(∂ιn) + bs∆n

n ιn − ιn

then the homomorphisms ρX
n are a natural chain homotopy between bsX and

id.

So we just need to find some choice of Rn’s. But we know Hn(∆n) =

0, so if the right-hand side is a cycle it is a boundary, and hence a
suitable Rn must exist. So we just have to compute

∂
(
−ρn−1(∂ιn) + bs∆n

n ιn − ιn
)
= −ρn−1(∂

2ιn)−bs∆n

n−1(∂ιn)+ ∂ιn + ∂ bs∆n

n (ιn)− ∂ιn = 0,

where we assumed we already knew ρn−1 satisfied the chain homo-
topy equation. So we can proceed by induction to define Rn, since for
n = 0 we have ∂R0 = 0 by the definition of R0.

We are left with making the following observation:

Lemma 6.5.8. If α ∈ Sn(X) is small then ρX
n α ∈ Sn+1(X) is also small.

Proof. It suffices to consider a small simplex α : ∆n → X. Then
ρX

n α = α∗(ρ∆n
n ιn), which means all simplices in the chain ρX

n α are
given by composing with α and hence have image contained in α(∆n).
That means these simplices are all small too, hence so is ρX

n α.



7
Tensor Products and Homology with Coefficients

In this chapter we will define variants of singular homology with
coefficients in any abelian group M using chain complexes S•(X; M);
an element of Sn(X; M) should be a “linear combination” ∑ aiσi with
σi : ∆n → X, but now with the coefficients ai living in M. To make
this precise we first need to introduce the tensor product of abelian
groups in §7.1 before we define homology with coefficients in §7.2.
We then need to discuss a little homological algebra, specifically the
torsion product of abelian groups, in §7.3, which we use in §7.4 to
prove the universal coefficient theorem, which describes the relation
between homology with coefficients in M and the singular homology
(with coefficients in Z) we have studied so far. In §7.5 we show that
we can also extend the cellular chains on a cell complex to compute
homology with coefficients.

7.1 Tensor Products of Abelian Groups

Definition 7.1.1. If A, B, C are abelian groups, a bilinear map

ϕ : A× B→ C

is a map of sets that satisfies

ϕ(a + a′, b) = ϕ(a, b) + ϕ(a′, b), ϕ(a, b + b′) = ϕ(a, b) + ϕ(a, b′)

for all a, a′ ∈ A, b, b′ ∈ B. A tensor product of A and B is an abelian
group A ⊗ B together with a universal bilinear map u : A × B →
A⊗ B: for every bilinear map ϕ : A× B → C there exists a unique
homomorphism f : A⊗ B→ C such that ϕ = f ◦ u, i.e.

A× B A⊗ B

C.

u

ϕ
∃!

As with any definition of an object by a universal property, if the
tensor product exists it is unique up to unique isomorphism.

Lemma 7.1.2. For any abelian groups A, B, their tensor product exists.

Proof. Let F = Z(A× B) be the free abelian group on the set A× B.
Then by the universal property of F, a morphism of sets ϕ : A× B→ C
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where C is an abelian group corresponds to a unique homomorphism
ϕ′ : F → C. Moreover, ϕ is a bilinear map if and only if the subgroup R
of F generated by (a + a′, b)− (a, b)− (a′, b) and (a, b + b′)− (a, b)−
(a, b′) for all a, a′ ∈ A, b, b′ ∈ B, is contained in the kernel of ϕ′.
Setting T := F/R, then by the universal property of the quotient
we get a correspondence between bilinear maps A × B → C and
homomorphisms T → C, given by composing with the map u : A×
B → F → T where the first map is the inclusion of the generators
and the second is the quotient map. This shows that (T, u) is a tensor
product of A and B.

Remark 7.1.3. For a ∈ A, b ∈ B, we write a⊗ b ∈ A⊗ B for u(a, b).
From the explicit construction we see that an element of A⊗ B can be
written as a finite sum ∑ ai ⊗ bi of elements of this form. Since u is
bilinear, we have

(a + a′)⊗ b = a⊗ b + a′ ⊗ b,

a⊗ (b + b′) = a⊗ b + a⊗ b′,

(na)⊗ b = n(a⊗ b) = a⊗ nb, n ∈ Z.

Warning 7.1.4. A general element of A⊗ B can not be written as a⊗ b.

The following exercises give some examples of tensor products:

Exercise 7.1. For integers n, m, show that Z/n ⊗Z/m ∼= Z/r where r =

gcd(n, m) is the greatest common divisor of n and m. In particular, if p and q
are distinct primes, then Z/p⊗Z/q ∼= 0.

Exercise 7.2. For sets S, T, show that there is a canonical isomorphism

ZS⊗ZT ∼= Z(S× T).

We now state the basic formal properties of the tensor product;
proving them using the universal property is left as an exercise.

Proposition 7.1.5.

(i) For abelian groups A, B, there is a canonical isomorphism

A⊗ B ∼−→ B⊗ A

taking a⊗ b to b⊗ a.

(ii) For abelian groups A, B, C there is a canonical isomorphism

A⊗ (B⊗ C) ∼−→ (A⊗ B)⊗ C.

(iii) For abelian groups Ai, i ∈ I and B, there is a canonical isomorphism

⊕
i∈I

Ai ⊗ B ∼−→
(⊕

i∈I
Ai

)
⊗ B.

(iv) For an abelian group A, there are canonical isomorphisms

Z⊗ A ∼−→ A,

0⊗ A ∼−→ 0.
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(v) For homomorphisms f : A → A′, g : B → B′, there is a canonical
homomorphism

f ⊗ g : A⊗ B→ A′ ⊗ B′

taking a⊗ b to f (a)⊗ g(b). Moreover this is compatible with compo-
sition (so ⊗ is a functor Ab× Ab→ Ab).

(vi) For abelian groups A, A′, B, B′ and a homomorphism f : A→ A′ the
tensor product f ⊗ 0 with the zero map 0 : B → B′ is the zero map
0 : B⊗ A→ B′ ⊗ A′.

(vii) For homomorphisms f , g : A → A′, h : B → B′, we have ( f + g)⊗
h = f ⊗ h + g⊗ h as homomorphisms A⊗ B→ A′ ⊗ B′.

Exercise 7.3. Prove the formal properties of ⊗ using the universal property.

Lemma 7.1.6 (Tensor product preserves cokernels). For M an abelian
group and an exact sequence

A
f−→ B

g−→ C → 0,

(so that C ∼= B/ im f ) the sequence

A⊗M
f⊗id−−→ B⊗M

g⊗id−−→ C⊗M→ 0

is also exact.

Proof. The cokernel of f ⊗ id has the universal property that any
homomorphism ϕ : B ⊗ M → N such that ϕ ◦ ( f ⊗ id) = 0 factors
uniquely through it. We thus need to check that g ⊗ id has this
universal property.

A homomorphism ϕ : B⊗M→ N corresponds to a bilinear map
ϕ′ : B×M → N, and ϕ ◦ ( f ⊗ id) = 0 holds if and only if ϕ′ ◦ ( f ×
id) = 0. But then we can define a bilinear map ψ : C×M→ N by

ψ(gx, y) = ϕ′(x, y),

which is well-defined since gx = gx′ means x = x′ + f (a) and then

ϕ′(x, y) = ϕ′(x′, y) + ϕ′( f (a), y) = ϕ′(x′, y).

Moreover, ψ is clearly the unique bilinear map that factors ϕ′ through
g× id, which means that it corresponds to the unique homomorphism
C⊗M→ N that factors ϕ through g⊗ id.

Remark 7.1.7. This implies in particular that if f : A→ B is surjective,
then so is f ⊗ id : A ⊗ M → B ⊗ M for any M. However, if f is
injective, the map f ⊗ id need not be injective. For example, consider

the injective map Z
2−→ Z (given by multiplication by 2) — if we tensor

this with Z/2 we get Z/2 0−→ Z/2, which is certainly not injective.
This implies that in general the functor – ⊗ M does not preserve
short exact sequences. We now consider two special situations where
exactness is preserved:

Lemma 7.1.8. If F = ZS is a free abelian group, then –⊗ F preserves short
exact sequences.
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Proof. Since F ∼=
⊕

s∈S Z and we know ⊗ preserves direct sums, we
have A⊗ F ∼=

⊕
s∈S A. For a short exact sequence

0→ A i−→ B
q−→ C → 0,

tensoring with F therefore gives

0→
⊕
s∈S

A
⊕

s∈S i−−−→
⊕
s∈S

B
⊕

s∈S q−−−→
⊕
s∈S

C → 0.

This is exact since a direct sum of exact sequences is always exact by
Exercise 3.4.

Lemma 7.1.9. If 0 → A i−→ B
q−→ C → 0 is a splittable short exact

sequence, then for any abelian group the sequence

0→ A⊗M i⊗id−−→ B⊗M
q⊗id−−→ C⊗M→ 0

is exact, and is again splittable.

Proof. Choosing a splitting s : C → B gives an isomorphism of the
exact sequence with

0→ A→ A⊕ C → C → 0.

Since –⊗M preserves direct sums, tensoring this with M we get

0→ A⊗M→ A⊗M⊕ C⊗M→ C⊗M→ 0,

which is obviously again exact, and this is isomorphic to the tensor
product of the original sequence with M, with the isomorphism given
by the splitting s⊗ id.

As an important special case, we have:

Lemma 7.1.10. If 0→ A→ B→ C → 0 is a short exact sequence where
C is a free abelian group, then

0→ A⊗M→ B⊗M→ C⊗M

is a (splittable) short exact sequence for every M.

Proof. Any such short exact sequence is splittable, by Exercise 4.3.

Remark 7.1.11. Everything we’ve done in this section works exactly
the same over an arbitrary commutative ring R: If M, N, K are R-
modules, we can define an R-bilinear map ϕ : M× N → K to be a
morphism of sets such that

ϕ(m+m′, n) = ϕ(m, n)+ϕ(m′, n), ϕ(m, n+n′) = ϕ(m, n)+ϕ(m, n′), ϕ(rm, n) = rϕ(m, n) = ϕ(m, rn),

for m, m′ ∈ M, n, n′ ∈ N, r ∈ R. There exists a universal R-bilinear
map M× N → M⊗R N, and the relative tensor product ⊗R has the
same formal properties as those we prove for ⊗ = ⊗Z. Note that if
k is a field and V is a k-module (k-vector space), then ⊗kV always
preserves short exact sequences (since every k-module is free).
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Exercise 7.4. Show that M⊗R N is the quotient of M⊗ N by the subgroup
generated by elements of the form rm⊗ n−m⊗ rn for r ∈ R, m ∈ M, n ∈ N.

Exercise 7.5.

(i) Let R be an (associative, unital) ring. Show that an R-module is the
same as an abelian group M and a homomorphism α : R⊗ M → M
such that the square

R⊗ R⊗M R⊗M

R⊗M M

idR⊗α

µ⊗idM µ

α

and the triangle

M Z⊗M R⊗M

M

∼ η⊗idM

α

commute, where the homomorphism µ : R⊗ R→ R is given by multi-
plication in R and η : Z→ R is given by the unit of R (i.e. η(1) = 1).

(ii) Show that an R-module homomorphism ϕ : M → N is the same as a
homomorphism of abelian groups such that the square

R⊗M R⊗ N

M N

id⊗ϕ

ϕ

commutes.

(iii) Show that if M is an abelian group and R is a ring, then R⊗M has a
natural R-module structure. [Hint: Use the multiplication in R.]

(iv) Show that if M is an abelian group and N is an R-module, there is a
natural correspondence between R-module homomorphisms R⊗M→
N and homomorphisms of abelian groups M→ N.

(v) If S is a set and R is a ring, show that R⊗ZS has the universal property
of the free R-module RS on S: R-module homomorphisms RS → M
correspond to functions S→ M.

Exercise 7.6. If k is a field and V, W are k-vector spaces, with bases {xi}i∈I
and {yj}j∈J , respectively, show that xi ⊗ yj is a basis for V ⊗k W. If V and W
are finite-dimensional, conclude that

dim(V ⊗k W) = dim V · dim W.

7.2 Homology with Coefficients

Definition 7.2.1. Let C• be a chain complex and M an abelian group.
We define a chain complex C• ⊗ M given levelwise by the tensor
products Cn ⊗M, with boundary maps

∂⊗ idM : Cn ⊗M→ Cn−1 ⊗M.

By Proposition 7.1.5 we have

(∂⊗ idM)2 = ∂2 ⊗ idM = 0⊗ idM = 0

so this is a chain complex. This gives a functor –⊗M : Ch→ Ch.
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Lemma 7.2.2. There is a natural map Hk(C)⊗M→ Hk(C⊗M).

Proof. By definition, we have an exact sequence

Bk(C)→ Zk(C)→ Hk(C)→ 0,

and so an exact sequence

Bk(C)⊗M→ Zk(C)⊗M→ Hk(C)⊗M→ 0

by Lemma 7.1.6. To construct a natural map Hk(C)⊗M→ Hk(C⊗M)

it is therefore enough to show that the boundary maps

∂M = ∂⊗ idM : Cn ⊗M→ Cn−1 ⊗M

induce commutative squares

Bk(C)⊗M Zk(C)⊗M

Bk(C⊗M) Zk(C⊗M).

This is true because ∂M factors through Bk(C)⊗M and Zk(C)⊗M,
so that we have a commutative diagram

Ck+1 ⊗M Bk(C)⊗M Zk(C)⊗M Ck ⊗M Ck−1 ⊗M

Bk(C⊗M) Zk(C⊗M).

∂M

0

∂M

Here the dashed arrow Bk(C)⊗M→ Bk(C⊗M) exists since Ck+1 ⊗
M→ Bk(C)⊗M is surjective by Lemma 7.1.6, and so factors uniquely
through the image Bk(C⊗M), while the dashed arrow Zk(C)⊗M→
Zk(C ⊗M) exists since the composite Zk ⊗M → Ck−1 ⊗M is zero,
and so factors uniquely through the kernel Zk(C⊗M).

Exercise 7.7. Show that for C• a chain complex, the natural map

Hk(C)⊗Z→ Hk(C⊗Z) ∼= HkC

is an isomorphism.

Remark 7.2.3. However, since tensoring does not preserve short exact
sequences, this natural map is typically not an isomorphism.

Exercise 7.8. Show that a chain homotopy h between chain maps f , g : C• →
D• induces a chain homotopy between f ⊗M, g⊗M : C• ⊗M→ D• ⊗M for
any abelian group M.

Definition 7.2.4. For a topological space X and an abelian group
M we define S•(X; M) := S•(X)⊗M, with homology Hn(X; M) :=
Hn(S•(X; M)). This is the singular homology of X with coefficients in
M. Similarly, for a subspace pair (X, A) we define S•(X, A; M) :=
S•(X, A)⊗M giving the relative singular homology of (X, A) with
coefficients in M as

Hn(X, A; M) := Hn(S•(X, A; M)).
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Remark 7.2.5. Note that Hn(X, A; Z) is just the usual singular homol-
ogy we have been calling Hn(X, A) so far.

Remark 7.2.6. Since Sn(X) is the free abelian group on Singn(X), the
abelian group Sn(X; M) is isomorphic to

⊕
σ∈Singn(X) M. We can thus

think of elements of Sn(X; M) as finite sums ∑n
i=1 miσi with mi ∈ M

and σi ∈ Singn(X). If R is a commutative ring, then Sn(X; M)⊗ R is
isomorphic to the free R-module R Singn(X) on the set Singn(X).

Remark 7.2.7. Homology with M-coefficients is a composite of func-
tors

Pair S•−→ Ch
–⊗M−−−→ Ch

Hn−→ Ab,

and so is functorial in continuous maps of pairs.

Remark 7.2.8. If R is a ring and M is an R-module, then H∗(X; M)

also has a natural R-module structure. This is because we can lift
–⊗M to a functor Ab→ ModR, where ModR denotes the category of
R-modules.

Remark 7.2.9. The coefficients we are interested in are typically the
field Q (and sometimes R and C) and the finite fields Fp = Z/p. This We use the convention that Fp denotes

Z/p when we think of it as a ring (or
field), while we write Z/p when we
only consider the additive structure.

is because homology with field coefficients is in some ways better-
behaved than with integral coefficients, and it can often be easier in
practice to compute the homology “one prime at a time”. Although we
cannot exactly recover H∗(X) from H∗(X; Q) and H∗(X; Fp), in some
ways these homologies taken together contains “the same information”
about X as the integral homology groups. (We will see one example
of this below in Theorem 7.4.8.)

Lemma 7.2.10. If (X, A) is a subspace pair and M is an abelian group,
then there is a long exact sequence

· · · → Hn(A; M)→ Hn(X; M)→ Hn(X, A; M)
∂−→ Hn−1(A; M)→ · · ·

with the first two maps coming from the inclusions A ↪→ X and (X, ∅) ↪→
(X, A).

Proof. Tensoring the short exact sequence

0→ S•(A)→ S•(X)→ S•(X, A)→ 0

with M, we get

0→ S•(A; M)→ S•(X; M)→ S•(X, A; M)→ 0,

which is again a short exact sequence by Lemma 7.1.10, since the
abelian group Sn(X, A) is free (on the set Singn(X) \ Singn(A)) for
every n. We therefore get a long exact sequence in homology of the
required form.

Remark 7.2.11. We also have Mayer–Vietoris sequences with coeffi-
cients in M. We can use these long exact sequences to redo many of
the computations we did with Z-coefficients. In particular, we have

H̃∗(Sn; M) ∼=

M, ∗ = n,

0, ∗ ̸= n.
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Proposition 7.2.12. Singular homology with coefficents in an abelian group
M satisfies the Eilenberg–Steenrod axioms of Definition 4.4.3, except that
we have

H∗(∗; M) ∼=

M, ∗ = 0,

0, ∗ ̸= 0.

Proof. It remains to check that H∗(–; M) satisfies the homotopy, exci-
sion, and additivity axioms.

Recall that we proved in Theorem 6.3.1 that a homotopy between
maps of pairs f , g : (X, A) → (Y, B) induces a chain homotopy be-
tween the chain maps f∗, g∗ : S•(X, A) → S•(Y, B). Tensoring with
an abelian group M preserves chain homotopies by Exercise 7.8, so
that we also get a chain homotopy between f∗, g∗ : S•(X, A; M) →
S•(Y, B; M), which implies the homotopy axiom.

To prove excision, note that the key properties of barycentric sub-
division are preserved by tensoring with M, so that locality, Theo-
rem 6.4.3, also holds for singular chains with M-coefficients. Our
proof of excision in Theorem 6.4.1 therefore goes through also for
H∗(–; M).

The additivity axiom is also clear, since tensoring preserves direct
sums. Finally, we recall that S•(∗) is given by Z in degrees ≥ 0, with
the identity and 0 alternating as boundary maps, and 0 in negative
degrees. Tensoring this with M we get the chain complex

· · · → M id−→ M 0−→ M→ · · · 0−→ M→ 0→ · · · ,

with homology H0(∗; M) = M and H∗(∗; M) = 0 for ∗ ̸= 0.

Definition 7.2.13. If ϕ : M → M′ is a homomorphism of abelian
groups, then ϕ induces a natural chain map

S•(X, A)⊗M
id⊗ϕ−−−→ S•(X, A)⊗M′,

and so natural homomorphisms in homology

ϕ∗ : Hn(X, A; M)→ Hn(X, A; M′).

Proposition 7.2.14. Suppose 0→ M′ i−→ M
q−→ M′′ → 0 is a short exact

sequence of abelian groups. Then for any subspace pair (X, A) there is a
long exact sequence

· · · → Hn(X, A; M′) i∗−→ Hn(X, A; M)
q∗−→ Hn(X, A; M′′)→ Hn−1(X, A; M′)→ · · · .

Proof. Since the abelian group Sn(X, A) is free for all n, if we tensor
the short exact sequence with S•(X, A) we get a short exact sequence
of chain complexes

0→ S•(X, A; M′) id⊗i−−→ S•(X, A; M)
id⊗q−−→ S•(X, A; M′′)→ 0

by Lemma 7.1.8. This gives the required long exact sequence in
homology.
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Exercise 7.9. For an integer n, let us write n : Z→ Z for the homomorphism
given by multiplication with n.

(i) For any abelian group M, use the universal property of ⊗ to show
that under the natural isomorphism M ∼= M⊗Z the homomorphism
id⊗ n : M⊗Z→ M⊗Z corresponds to the homomorphism M→ M
given by multiplication with n.

(ii) Use the natural isomorphism from Exercise 7.7 to show that the nat-
ural map m∗ : Hn(X, A; Z) → Hn(X, A; Z) induced by m : Z → Z on
coefficients is again given by multiplication with m.

Corollary 7.2.15. Let (X, A) be a subspace pair. Then for any integer m
there are short exact sequences

0→ Hn(X, A)⊗Z/m→ Hn(X, A; Z/m)→ Tor(Z/m, Hn−1(X, A))→ 0,

where Tor(Z/m, Hn−1(X, A)) denotes the m-torsion subgroup of Hn−1(X, A)

(i.e. the subgroup of elements x such that mx = 0).

Proof. Applying Proposition 7.2.14 to the short exact sequence

0→ Z
m−→ Z→ Z/m→ 0,

we get a long exact sequence

· · · → Hn(X, A)
m−→ Hn(X, A)→ Hn(X, A; Z/n)→ Hn−1(X, A)→ · · · ,

and so short exact sequences

0→ coker
(

Hn(X, A)
m−→ Hn(X, A)

)
→ Hn(X, A; M)→ ker

(
Hn−1(X, A)

m−→ Hn−1(X, A)
)
→ 0.

Here we can identify

coker
(

Hn(X, A)
m−→ Hn(X, A)

)
∼= Hn(X, A)⊗Z/m,

ker
(

Hn−1(X, A)
m−→ Hn−1(X, A)

)
∼= Tor(Z/m, Hn−1(X, A)),

using Exercise 7.9, which gives the required short exact sequences.

Example 7.2.16. Let us compute H∗(RPn; Fp) where p is a prime.
Recall that

Hi(RPn) ∼=


Z/2, i odd, i < n,

0, i even > 0,

Z, i = 0 or i = n odd.

If p = 2 the short exact sequences from Corollary 7.2.15 take the form

0→ Z/2→ Hi(RPn; F2)→ 0→ 0, (i = 0 or i ≤ n odd),

0→ 0→ Hi(RPn; F2)→ Z/2→ 0, (i even > 0),

so that we get

H∗(RPn; F2) ∼=

Z/2, 0 ≤ ∗ ≤ n,

0, ∗ > n.
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On the other hand, if p is an odd prime, we get

H∗(RPn; Fp) ∼=

Z/p, ∗ = 0 or ∗ = n odd,

0, otherwise.

In particular, we see that homology with different coefficients can
look quite different. For example, if n is even and p is an odd prime
then the Fp-homology of RPn is the same as that of a point.

Example 7.2.17. Sometimes homology with coefficients can detect
more than integral homology. For example, consider a continuous
map f : Sn → Sn of degree d, and form a cell complex X by attaching
an (n + 1)-cell to Sn along f , so that we have a pushout square

Sn Dn+1

Sn X.

f

The space X is called the Moore space of Z/d in degree n. Its integral
homology is given by

H̃∗(X) ∼=

Z/d, ∗ = n,

0, otherwise,

as is easily seen using cellular homology, for example. We have a
quotient map q : X → X/Sn ∼= Sn+1. In reduced integral homology
this is the zero map, since H̃∗(X) is 0 except in degree n and H̃∗(Sn+1)

is 0 except in degree n+ 1. Thus integral homology cannot distinguish
q from a constant map. On the other hand, from Corollary 7.2.15 we
see that

H̃∗(X; Z/d) ∼=

Z/d, ∗ = n, n + 1,

0, otherwise.

Moreover, in the long exact sequence for the pair (X, Sn) we have

· · · → 0 = Hn+1(Sn; Z/d)→ Hn+1(X; Z/d)
q∗−→ H̃n+1(Sn+1; Z/d)→ · · · ,

so that q∗ : Z/d→ Z/d is injective and so non-zero. Hence homology
with Z/d-coefficients sees that q is not homotopic to a constant map.

7.3 Torsion Products

Our next goal is to understand the relation between H∗(X; M) and
H∗(X) for a general abelian group M. To do so we need a little
bit of homological algebra related to tensor products. We will take
advantage of the fact that homological algebra over Z is fairly simple
to derive what we need without building any general machinery for
derived functors.

Definition 7.3.1. Let A be an abelian group. A free resolution of A (of
length 2) is a short exact sequence

0→ F1 → F0 → A→ 0,

where F0 and F1 are free abelian groups.
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Lemma 7.3.2. Every abelian group has a free resolution of length 2.

We need the following important fact about abelian groups:

Fact 7.3.3. Every subgroup of a free abelian group is free.

Proof of Lemma 7.3.2. Let A be an abelian group. Then there exists
a surjection s : F → A with F free; for example we can always take
F :=

⊕
a∈A Z, the free abelian group on the set A, with its canonical

homomorphism to A. We have a short exact sequence

0→ ker s→ F → A→ 0,

where ker s is free by Fact 7.3.3.

Definition 7.3.4. Let A and B be abelian groups, and let

0→ F1
i−→ F0 → A→ 0

be a free resolution. The torsion product Tor(A, B) is the kernel of

i⊗ id : F1 ⊗ B→ F0 ⊗ B.

Remark 7.3.5. Let F• denote the chain complex · · · → 0→ F1
i−→ F0.

Then H0(F• ⊗ B) ∼= A ⊗ B by Lemma 7.1.6, while H1(F• ⊗ B) ∼=
Tor(A, B).

Warning 7.3.6. The analogue of Fact 7.3.3 is false for R-modules over
a general commutative ring R (though it does hold whenever R is a
principal ideal domain). This means that an R-module M need not
have a free resolution of length 2; it is always possible to find a free
resolution, in the form of an exact sequence

· · · → F2 → F2 → F1 → F0 → M→ 0,

with the Fi’s all free, but this may have to be infinitely long. We can
then define a sequence of higher Tor functors by

TorR
i (M, N) := Hi(F• ⊗R N),

which can potentially be non-trivial for all i ≥ 0.

We will see in a moment that Tor(A, B) is well-defined, but let us
first mention some examples:

Example 7.3.7. If F is a free abelian group, then 0→ F id−→ F is a free
resolution, so that Tor(F, B) = 0 for any abelian group B since this
is the kernel of 0 ∼= 0⊗ B→ F⊗ B. We also have that Tor(A, F) = 0
for any abelian group A, since tensoring with F preserves short exact
sequences by Lemma 7.1.8.

Example 7.3.8. For an integer m, a free resolution of Z/m is given by
the short exact sequence

0→ Z
m−→ Z→ Z/m→ 0.

For an abelian group B, the torsion product Tor(Z/m, B) is therefore
isomorphic the kernel of the homomorphism B→ B given by multi-
plication with m, i.e. the subgroup of m-torsion elements in B. This is
the reason for the name “torsion product”.
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Exercise 7.10. Show that for integers n, m we have Tor(Z/n, Z/m) ∼= Z/r,
where r = gcd(n, m).

Definition 7.3.9. An abelian group B is flat if –⊗ B preserves short
exact sequences. By definition, this implies Tor(A, B) = 0 for all A.

Fact 7.3.10. An abelian group A is flat if and only if A is torsion-free, i.e.
for every a ∈ A if a ̸= 0 then na ̸= 0 for all n ̸= 0 in Z.

Example 7.3.11. Since Q is torsion-free, we see that Tor(A, Q) = 0 for
all A. The same holds for any field of characteristic 0, such as R or C.

Proposition 7.3.12. Suppose 0→ F1
i−→ F0

q−→ A→ 0 is a free resolution,
and

0→ B1
j−→ B0

p−→ C → 0

is any short exact sequence. Given a homomorphism f : A→ C there exists
an extension of f to a commutative diagram

F1 F0 A

B1 B0 C.

i

ϕ1 ϕ0

q

f

j p

The maps ϕ• can be viewed as a chain map F• → B• such that H0(ϕ•) = f .
Given another such chain map ϕ′• : F• → B•, there exists a chain homotopy
between ϕ• and ϕ′•,

F1 B1

F0 B0.

ϕ1

ϕ′1q p
ϕ0

ϕ′0

Proof. By assumption F0 is a free abelian group ZS for some set S.
Since p is surjective, we can choose preimages in B0 of the images of
S under f q : F0 → C. This determines a homomorphism ϕ0 : F0 → B0

such that pϕ0 = f q. Since F1 = ker q and B1 = ker p the map ϕ0

restricts to a homomorphism ϕ1 : F1 → B1. This shows that a lift
exists. Given another lift (ϕ′0, ϕ′1) we see that p(ϕ0 − ϕ′0) = 0 so that
since B1 = ker p there exists a unique homomorphism h : F0 → B1

such that jh = ϕ0 − ϕ′0, which is precisely the equation required of a
chain homotopy. (We also have hi = ϕ1 − ϕ′1 since

jhi = ϕ0i− ϕ′0i = jϕ1 − jϕ′1

and j is injective.)

Corollary 7.3.13. Suppose F• and F′• are two free resolutions of an abelian
group A, viewed as chain complexes. Then F• and F′• are chain homotopy
equivalent.

Proof. We can choose lifts α : F• → F′• and β : F′• → F• of id : A → A.
Then βα and idF• are two lifts of idA and hence are chain homotopic,
and similarly αβ is chain homotopic to idF′• .
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Corollary 7.3.14. For abelian groups A, B their torsion product Tor(A, B)
is well-defined and independent of the choice of free resolution of A.

Proof. Suppose we have two free resolutions F• and F′• of A. Then F•
and F′• are chain homotopic. Since –⊗ B preserves chain homotopies,
this implies that F• ⊗ B and F′• ⊗ B are chain homotopic, and hence
have the same homology. Thus we get an isomorphism between
Tor(A, B) computed using these two resolutions.

Proposition 7.3.15 (Horseshoe Lemma). Given a short exact sequence of
abelian groups

0→ A′ i−→ A
q−→ A′′ → 0,

and free resolutions

0→ F′1
j′−→ F′0

p′−→ A′ → 0,

0→ F′′1
j′′−→ F′′0

p′′−→ A′′ → 0,

we can choose a free resolution F• of A such that there is a short exact
sequence of chain complexes

0→ F′• → F• → F′′• → 0.

Proof. Since F′′0 is free and q is surjective, we can choose s : F′′0 → A
such that qs = p′′. Set F0 := F′0 ⊕ F′′0 and define p : F0 → A by
p(x, y) = ip′(x) + s(y). Then p is surjective: Given a in A we know
qa = p′′(y) for some y since p′′ is surjective. Then q(a− s(y)) = 0 so
a− s(y) = i(b) for some b ∈ A′, and since p′ is surjective there exists
x such that b = p′(x). Hence

a = ip′(x) + s(y) = p(x, y).

Let F1 := ker p with j : F1 → F0 the inclusion. If p(x, y) = 0 then
qp(x, y) = p′′y = 0, so y ∈ F′′1 , and if x ∈ F′1 then p(x, 0) = ip′(x) = 0,
so we get a commutative diagram

F′1 F1 F′′1

F′0 F0 F′′0

A′ A A′′.

j′ j j′′

p′ p p′′

i q

The abelian group F1 is free by Fact 7.3.3. The top row is certainly Note that since F′′1 is free, there exists
a splitting of F1 as F′1 ⊕ F′′1 . One such
splitting is given by (−γ, id). However,
this splitting is probably not compatible
with the splitting of F0, and indeed it
may well be the case that no compatible
splitting exists, since this would require
that for y ∈ F′′1 we have p(0, y) = s(y) =
0.

exact at F′1, since the map F′1 → F1 is a restriction of an injective
map, and it is exact at F1 since the kernel of F1 → F′′1 is the elements
(x, 0) ∈ F0 such that p(x, 0) = ip′x = 0, which is precisely the image
of F′1. It remains to see that F1 → F′′1 is surjective. For y ∈ F′′1 we have
qs(y) = p′′(y) = 0 so s(y) = i(a) for some unique a ∈ A′. Since F′′1 is
free and p′ is surjective we can choose a map γ : F′′1 → F′0 such that
ip′γ(y) = s(y); then p(−γ(y), y) = 0 so (−γ(y), y) is in F1 and maps
to y.
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Corollary 7.3.16. Suppose we have a short exact sequence of abelian groups
0 → A′ → A → A′′ → 0. Then for any abelian group B there is a long
exact sequence

0→ Tor(A′, B)→ Tor(A, B)→ Tor(A′′, B)→ A′⊗ B→ A⊗ B→ A′′⊗ B→ 0.

Proof. By Proposition 7.3.15 we can lift the short exact sequence to a
short exact sequence of free resolutions

0→ F′• → F• → F′′• → 0.

Tensoring with B gives

0→ F′• ⊗ B→ F• ⊗ B→ F′′• ⊗ B→ 0,

and this is again a short exact sequence of chain complexes since
tensoring with free abelian groups preserves short exact sequences
by Lemma 7.1.8. This gives a long exact sequence in homology of the
required form.

We also have an exact sequence in the second variable:

Proposition 7.3.17. If A is an abelian group and 0→ B′ → B→ B′′ → 0
is a short exact sequence of abelian groups, then there is a long exact sequence

0→ Tor(A, B′)→ Tor(A, B)→ Tor(A, B′′)→ A⊗ B′ → A⊗ B→ A⊗ B′′ → 0.

Proof. Let F• be a free resolution of A, viewed as a two-term chain
complex. Then

0→ F• ⊗ B′ → F• ⊗ B→ F• ⊗ B′′ → 0

is a short exact sequence of chain complexes by Lemma 7.1.8. This
has a long exact sequence in homology, which has the required form
by Remark 7.3.5.

This implies that we can also compute Tor using the second vari-
able:

Corollary 7.3.18 (Tor is symmetric). Suppose A and B are abelian groups
and 0 → G1 → G0 → B → 0 is a free resolution. Then Tor(A, B) is
isomorphic to the kernel of A⊗ G1 → A⊗ G0.

Proof. Applying Proposition 7.3.17 and the computation of Exam-
ple 7.3.7 we get a long exact sequence

0→ Tor(A, B)→ A⊗ G1 → A⊗ G0 → A⊗ B→ 0,

which implies that Tor(A, B) is the kernel of the subsequent map.

7.4 The Universal Coefficient Theorem

We now want to apply our work on Tor in topology, to get the
following result:
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Theorem 7.4.1 (Universal Coefficient Theorem). Let (X, A) be a sub-
space pair and M an abelian group. There are natural short exact sequences

0→ Hn(X, A)⊗M→ Hn(X, A; M)→ Tor(Hn−1(X, A), M)→ 0.

In fact, this is just a special case (for S•(X, A)) of an algebraic
result:

Proposition 7.4.2. Suppose C• is a chain complex of abelian groups such
that Cn is free for all n. Then for any abelian group M there are natural
short exact sequences

0→ Hn(C)⊗M→ Hn(C⊗M)→ Tor(Hn−1(C), M)→ 0.

Proof. Let Bn := Bn(C) and Zn := Zn(C) be the boundaries and cycles
in C. By the definition of Hn(C) we have short exact sequences

0→ Bn
jn−→ Zn → Hn(C)→ 0,

where jn denotes the inclusion Bn ↪→ Zn. Note that the abelian groups
Bn and Zn are free, since they are subgroups of Cn, so this is a free
resolution of Hn(C).

We also have a short exact sequence

0→ Zn → Cn
∂′−→ Bn−1 → 0,

where ∂′ denotes the boundary map Cn
∂−→ Cn−1 viewed as a map

to its image Bn−1. Since Bn−1 is free, this is a splittable short exact
sequence. Moreover, if we define chain complexes Z• and B′• by
taking the groups Zn and B′n = Bn−1 with 0 differential, then we have
a short exact sequence of chain complexes

0→ Z• → C•
∂′−→ B′• → 0,

since the diagram

0 Zn Cn Bn−1 0

0 Zn−1 Cn−1 Bn−2 0

0 ∂

∂′

0

∂′

commutes. Since this is a levelwise splittable short exact sequence,
if we tensor with M we get again a short exact sequence of chain
complexes

0→ Z• ⊗M→ C• ⊗M→ B′• ⊗M→ 0,

which induces a long exact sequence in homology. Since the differen-
tials in Z• and B′• are all zero, we have Hn(Z• ⊗M) = Zn ⊗M and
Hn(B′• ⊗M) = Bn−1 ⊗M, and this long exact sequence looks like

. . . Bn⊗M
δn+1−−→ Zn⊗M→ Hn(C•⊗M)→ Bn−1⊗M δn−→ Zn−1⊗M→ · · · ,
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where we use δn for the connecting boundary map in the long exact
sequence to avoid confusion with that in C•. Around Hn(C• ⊗M) we
get a short exact sequence

0→ coker δn+1 → Hn(C• ⊗M)→ ker δn → 0.

To compute δn(x) for x ∈ Bn−1 ⊗ M we should lift x to Cn ⊗ M
along ∂′ ⊗ id, i.e. choose y such that (∂′ ⊗ id)(y) = x, then apply the
boundary map in C• ⊗M, which just gives x again, but viewed as an
element in Cn−1 ⊗M; finally we should take the unique preimage of
x in Zn−1 ⊗M. Thus the boundary map δn is just jn−1 ⊗ id : Bn−1 ⊗
M→ Zn−1 ⊗M. Since jn−1 gives a free presentation of Hn−1(C), we
have

ker δn = Tor(Hn−1(C), M), coker δn = Hn−1(C)⊗M.

Plugging this into the previous short exact sequence now gives the
result.

Remark 7.4.3. With some more work it can be shown that the short
exact sequences in the universal coefficient theorem can always be
split, although the splitting is not natural. This means that we have
non-canonical isomorphisms

Hn(X; M) ∼= Hn(X)⊗M⊕ Tor(Hn−1(X), M).

Thus the abelian groups Hn(X; M) are algebraically determined by
the integral homology groups, so that the integral coefficients are
“universal”.

Since torsion-free abelian groups are flat, we have the following
special case:

Corollary 7.4.4. If M is a torsion-free abelian group, then there is a natural
isomorphism

Hn(X, A)⊗M ∼−→ Hn(X, A; M).

Remark 7.4.5. In particular, we always have Hn(X, A; Q) ∼= Hn(X, A)⊗
Q. The same holds for R or C: in each case we get a vector space over
the relevant field of dimension rk Hn(X, A).

Remark 7.4.6. Suppose Hn(X, A) is a finitely generated abelian group
for all n and let p be a prime. By the classification of finitely generated
abelian groups we can write

Hn(X, A) ∼= Fn ⊕ Pn ⊕ Tn,

where Fn ∼= Zrn is free, Pn consists of the torsion of order pi for all
i > 0, and Tn consists of the torsion of order prime to p. Then we
have

Fn ⊗Z/p ∼= (Z/p)rn , Tor(Fn, Z/p) = 0,

Tn ⊗Z/p = Tor(Tn, Z/p) = 0,

Pn ⊗Z/p ∼= Tor(Pn, Z/p) ∼= (Z/p)qn
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where Pn is a sum of qn groups of the form Z/pi. The universal
coefficient theorem implies

Hn(X, A; Z/p) ∼= Fn⊗Z/p⊕ Pn⊗Z/p⊕Tor(Pn−1, Z/p) ∼= (Z/p)rn+qn+qn−1 .

Corollary 7.4.7. Let f : (X, A) → (Y, B) be a continuous map of pairs.
If f∗ : Hn(X, A) → Hn(Y, B) is an isomorphism for all n, then so is
f∗ : Hn(X, A; M)→ Hn(Y, B; M) for any abelian group M.

Proof. From the universal coefficient theorem we have morphisms of
short exact sequences

0 Hn(X, A)⊗M Hn(X, A; M) Tor(Hn−1(X, A), M) 0

0 Hn(Y, B)⊗M Hn(Y, B; M) Tor(Hn−1(Y, B), M) 0.

f∗⊗id f∗ Tor( f∗ ,M)

By assumption the maps f∗ ⊗ id and Tor( f∗, M) are isomorphisms,
hence the middle map is also an isomorphism by the 5-Lemma.

This result has a converse of sorts:

Theorem 7.4.8. Let f : (X, A) → (Y, B) be a continuous map of pairs.
If f∗ : Hn(X, A; M) → Hn(Y, B; M) is an isomorphism for all n when
M = Q and Fp for all primes p, then so is f∗ : Hn(X, A)→ Hn(Y, B).

Here is part of the proof, which follows from the universal coeffi-
cient theorem:

Proposition 7.4.9. Suppose (X, Y) is a subspace pair such that H∗(X, Y; M) =

0 for M = Q and M = Fp for all primes p. Then H∗(X, Y) = 0.

Proof. We abbreviate Hn := Hn(X, Y). For every prime p the universal
coefficient theorem gives short exact sequences

0→ Hn ⊗Fp → Hn(X, Y; Fp)→ Tor(Hn−1, Fp)→ 0.

If Hn(X, Y; Fp) = 0 for all n then this implies Hn ⊗ Fp = 0 and
Tor(Hn, Fp) = 0 for all n. Since we have a short exact sequence We use the following algebraic facts: an

abelian group A has a Q-vector space
structure (which is unique if it exists) if
and only if A is uniquely p-divisible for
all primes p, and in this case A ∼= A⊗Q.

0→ Tor(Hn, Fp)→ Hn
p−→ Hn → Hn ⊗Fp → 0,

this implies that multiplication by p on Hn is an isomorphism, i.e.
Hn is uniquely p-divisible. Since this holds for all primes p, Hn is a
rational vector space. But then Hn ∼= Hn ⊗Q ∼= Hn(X, Y; Q), so if the
rational homology of (X, Y) is also 0 we have Hn = 0.

To complete the proof of Theorem 7.4.8 we need a new topological
construction (the mapping cone); we leave this as an exercise:

Exercise 7.11. For a continuous map f : X → Y, the mapping cone M( f ) of M
is defined as the pushout

X Y

CX M( f ),

f

where CX is the cone on X, as in exercise 5 from week 4.
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(i) Show that Hi(M( f ), Y) ∼= H̃i−1(X) and the boundary map

Hi(M( f ), Y)→ Hi−1(Y)

corresponds to f∗ : Hi−1(X) → Hi−1(Y) (for i > 1). [Hint: M( f )/Y ∼=
CX/X ∼= ΣX plus Exercise 4.10; to identify the map use the naturality
of the boundary map for (CX, X)→ (M( f ), Y).]

(ii) From (i) the long exact sequence for the pair (M( f ), Y) looks like

· · · → Hi(M( f ))→ Hi−1(X)
f∗−→ Hi−1(Y)→ Hi−1(M( f ))→ · · ·

for i > 1. Use this to prove that f∗ : H∗(X)→ H∗(Y) is an isomorphism
if and only if H̃∗(M( f )) = 0.

(iii) Complete the proof that f∗ is an isomorphism in integral homology if
it is an isomorphism in homology with Q- and Fp-coefficients for all
primes p.

7.5 Cellular Homology with Coefficients

Suppose X is a cell complex, with Γn the set of n-cells. Then for any
abelian group M we have

H∗(Xk, Xk−1; M) ∼= H̃∗(
∨

α∈Γk

Sk; M) ∼=
⊕
α∈Γk

M ∼= ZΓk ⊗M.

We can therefore redo the construction of the cellular chain complex
of X with M-coefficients, giving Ccell

• (X; M) where

Ccell
n (X; M) := Hn(Xn, Xn−1; M).

The same proof as before then shows that

H∗(Ccell
• (X; M)) ∼= H∗(X; M).

Proposition 7.5.1. We have an isomorphism of chain complexes

Ccell
• (X; M) ∼= Ccell

• (X)⊗M.

We know both sides are levelwise isomorphic, so it suffices to check
the differentials on both sides agree. Since we computed these in
terms of degrees of maps of spheres, it suffices to make the following
observation:

Lemma 7.5.2. Let f : Sn → Sn be a map of degree d. Then

f∗ : H̃n(Sn; M)→ H̃n(Sn; M)

corresponds under the isomorphism H̃n(Sn; M) ∼= M to the homomorphism
M→ M given by multiplication with d.

Proof. By Lemma 7.2.2 we have a commutative square

H̃n(Sn)⊗M H̃n(Sn; M)

H̃n(Sn)⊗M H̃n(Sn; M),

∼

f∗⊗idM f∗

∼

where the universal coefficient theorem implies that the horizontal
maps are isomorphisms, and Exercise 7.9 tells us that the left vertical
homomorphism is given by multiplication with d.
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Example 7.5.3. We use cellular homology with F2-coefficients to
compute H∗(RPn; F2). Recall that the cellular chain complex of RPn

was
· · · → 0→ Z→ · · · → Z→ 0→ · · · ,

with Z in each degree i with 0 ≤ i ≤ n, and the differential in degree
i given by multiplication with 1 + (−1)i. Tensoring with Z/2 we get

· · · → 0→ Z/2 0−→ Z/2 0−→ · · · 0−→ Z/2→ 0→ · · · ,

since 1 + (−1)i+1 is always 0 mod 2, so that

H∗(RPn; F2) ∼=

Z/2, 0 ≤ ∗ ≤ n,

0, otherwise.





8
Cohomology

In this chapter we are going to define a “dual” variant of homology,
called cohomology. At first sight it may be hard to see the point of
doing this, especially since our first main result will be a “universal co-
efficient theorem” that implies cohomology groups contain essentially
the same information as homology groups. However, later on we will
see that cohomology has additional structure that is not present on
homology: the singular cohomology groups of a space form a graded
commutative ring. This additional structure makes cohomology a more
powerful invariant than homology.

We begin with a bit of algebra in §8.1, where we look at the abelian
groups Hom(A, B) of homomorphisms between abelian groups A
and B. Then we apply this to define singular cohomology groups
in §8.2. We then look at a little more homological algebra in §8.3,
where we define Ext of abelian groups, which we apply to prove the
universal coefficient theorem for cohomology in §8.4. Finally, in §8.5
we show that there is a cohomological version of cellular homology,
which computes the singular cohomology groups of a cell complex.

8.1 Hom of Abelian Groups

We begin with a brief algebraic interlude, to introduce the basic
properties of Hom for abelian groups.

Definition 8.1.1. For abelian groups A, B, let Hom(A, B) denote the
set of homomorphisms A → B. This is itself an abelian group, if
for f , g : A → B we define f + g to be the homomorphism given by
( f + g)(a) = f (a) + g(a).

The following exercises give some basic examples of this construc-
tion:

Exercise 8.1. For M an abelian group, show that Hom(Z/n, M) is the group
of n-torsion elements in M; in particular Hom(Z/n, Z/m) ∼= Z/r where
r = gcd(n, m).

Definition 8.1.2. Suppose S is a set and M an abelian group. Then
we write MS for the set of functions S→ M, which we think of as an
abelian group via pointwise addition, i.e. ( f + g)(s) = f (s) + g(s).
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Exercise 8.2. If S is a set and M an abelian group, then we have canonical
isomorphisms

Hom(ZS, M) ∼= MS ∼= ∏
s∈S

M,

of abelian groups.

We now state some formal properties of Hom; proving these is also
left as an exercise.

Proposition 8.1.3.

(i) For abelian groups Ai, i ∈ I and B, there is a canonical isomorphism

Hom(
⊕
i∈I

Ai, B) ∼−→∏
i∈I

Hom(Ai, B).

(ii) For an abelian group A, there are canonical isomorphisms

Hom(Z, A) ∼= A, Hom(0, A) ∼= Hom(A, 0) ∼= 0.

(iii) For homomorphisms f : A → A′, g : B → B′, there are canonical
homomorphisms

f ∗ : Hom(A′, B)→ Hom(A, B), g∗ : Hom(A, B)→ Hom(A, B′),

given by composition with f and g. These are compatible with compo-
sition, so Hom is a functor Abop × Ab→ Ab.

(iv) For abelian groups A, A′, B, B′ the homomorphisms

0∗ : Hom(A′, B)→ Hom(A, B), 0∗ : Hom(A, B)→ Hom(A, B′),

determined by the zero maps A→ A′, B→ B′, are both the respective
zero homomorphisms.

(v) For homomorphisms f , g : A→ A′, h, k : B→ B′, we have identities
( f + g)∗ = f ∗ + g∗ and (h + k)∗ = h∗ + k∗ of homomorphisms
Hom(A′, B) → Hom(A, B) and Hom(A, B) → Hom(A, B′), re-
spectively.

Exercise 8.3. Prove the basic formal properties of Hom.

In (iii), Abop denotes the opposite of the category Ab, in the following
sense:

Definition 8.1.4. If C is a category, its opposite category Cop has the
same objects as C, but morphisms go the opposite way, i.e. Cop(x, y) =
C(y, x), with composition given by composition in C. Thus a functor
F : Cop → D gives for every morphism f : x → y in C a morphism
F( f ) : F(y) → F(x); in somewhat old-fashioned terminology this is
called a contravariant functor from C to D.

Lemma 8.1.5 (Hom is left exact). For M an abelian group and exact
sequences

A
f−→ B

g−→ C → 0,

0→ A′
f ′−→ B′

g′−→ C′,
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(so that C ∼= coker g and A′ ∼= ker g′), the sequences

0→ Hom(C, M)
g∗−→ Hom(B, M)

f ∗−→ Hom(A, M),

0→ Hom(M, A′)
f ′∗−→ Hom(M, B′)

g′∗−→ Hom(M, C′)

are exact.

Proof. To see that g∗ is injective, suppose ϕ ∈ Hom(C, M) satisfies
g∗ϕ = 0. Then ϕ(g(b)) = 0 for all b ∈ B. Since g is surjective, this
implies that ϕ(c) = 0 for all c ∈ C, i.e. ϕ = 0. Since g f = 0 we have
f ∗g∗ = (g f )∗ = 0, so im g∗ ⊆ ker f ∗. Now if ϕ ∈ Hom(B, M) is in
ker f ∗, then ϕ( f (a)) = 0 for a ∈ A. In other words, im f ⊆ ker ϕ, so

ϕ factors as B→ B/ im f
ϕ′−→ M. But by exactness we can identify the

map B→ B/ im f with g, so ϕ = ϕ′g = g∗ϕ′, and so ϕ ∈ im g∗. This
proves the first sequence is exact.

Now we consider the second sequence. To see that f ′∗ is in-
jective, suppose ϕ ∈ Hom(M, A′) and f ′∗ϕ = f ′ ◦ ϕ = 0. Then
f ′(ϕ(a)) = 0 for all a ∈ A′, and so ϕ = 0 since f ′ is injective. We have
g′∗ f ′∗ = (g′ f ′)∗ = 0, so im f ′∗ ⊆ ker g′∗. If ϕ : M → B′ is in ker g′∗ then

g′(ϕ(b)) = 0 for all b ∈ B′, so that ϕ factors as M
ϕ′−→ ker g′ → B′.

But by exactness we can identify the inclusion ker g′ → B′ with
f ′ : A′ → B′ so ϕ = f ′∗ϕ′, i.e. ϕ ∈ im f ′∗ as required.

Remark 8.1.6. As special cases, we see that if f : A→ B is surjective,
then f ∗ : Hom(B, M)→ Hom(A, M) is injective, while if f is injective
then f∗ : Hom(M, A)→ Hom(M, B) is injective. The dual properties
are false, however: if we apply Hom(Z/2, –) to the surjective map
Z→ Z/2 we get 0→ Z/2, which is not surjective, while if we apply

Hom(–, Z/2) to the injective map Z
2−→ Z we get Z/2 0−→ Z/2, which

is not surjective. In particular, we see that Hom does not preserve
short exact sequences in either variable. However, just as for the
tensor product, there are special cases where exactness is preserved:

Proposition 8.1.7. For any abelian group M, the functor Hom(–, M)

preserves splittable short exact sequences.

Proof. Suppose 0 → A → B → C → 0 is a splittable short exact
sequence. Choosing a splitting determines an isomorphism to the the
trivial short exact sequence 0 → A → A⊕ C → C → 0. Since Hom
takes direct sums to products (and finite products and finite direct
sums are the same thing), we have

Hom(A⊕ C, M) ∼= Hom(A, M)⊕Hom(C, M),

so that the sequence

0→ Hom(C, M)→ Hom(A⊕ C, M)→ Hom(A, M)→ 0

is exact. But this is isomorphic to Hom(–, M) of the original sequence,
so this is also exact.

Remark 8.1.8. The same is true in the second variable, though we
will not need it.
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Corollary 8.1.9. If 0 → A → B → C → 0 is a short exact sequence of
abelian groups such that C is free, then

0→ Hom(C, M)→ Hom(B, M)→ Hom(A, M)→ 0

is a short exact sequence for any abelian group M.

Lemma 8.1.10. If F = ZS is a free abelian group, then Hom(ZS, –)
preserves short exact sequences.

Proof. Since we have Hom(ZS, M) ∼= MS ∼= ∏s∈S M this boils down
to the fact that an arbitrary product of short exact sequences is again
a short exact sequence; checking this is left as an exercise.

Remark 8.1.11. It is not true that Hom(–, B) preserves short exact
sequences if B is free. However, it can be shown that this is true if B is
divisible, meaning that for any b in B and every integer n ̸= 0 we can
write b = nb′ for some b′. In particular, Hom(–, Q) preserves short
exact sequences.

Exercise 8.4.

(i) Show that for abelian groups A, B, C there is a natural bijection between
the sets of homomorphisms A⊗ B→ C and A→ Hom(B, C).

(ii) Show that this bijection is moreover an isomorphism of abelian groups

Hom(A⊗ B, C) ∼= Hom(A, Hom(B, C)).

(iii) Show that composition of homomorphisms of abelian groups gives a
homomorphism

Hom(A, B)⊗Hom(B, C)→ Hom(A, C).

Exercise 8.5. If m : Z→ Z is the map given by multiplication with m, show
that m∗ : Hom(Z, M) → Hom(Z, M) corresponds under the isomorphism
Hom(Z, M) ∼= M to the map M→ M given by multiplication with m.

8.2 Singular Cohomology

Definition 8.2.1. If (C•, ∂) is a chain complex of abelian groups, then
for any abelian group M we define a new chain complex Hom(C, M)•
by setting

Hom(C, M)k := Hom(C−k, M),

and defining the boundary map Hom(C, M)k+1 → Hom(C, M)k to be
∂∗ for ∂ : C−k → C−k−1. This determines a functor Hom(–, M) : Chop →
Ch.

Exercise 8.6. Show that a chain homotopy between chain maps f , g : C• → D•
induces a natural chain homotopy between f ∗, g∗ : Hom(D, M)→ Hom(C, M)

for any abelian group M.

Definition 8.2.2. For a subspace pair (X, A) and an abelian group
M, we define the singular n-cochains of (X, A) with coefficients in M
to be the abelian group Sn(X, A; M) := Hom(Sn(X, A), M). The
singular cochains thus form the chain complex Hom(S•(X, A), M)

with Sn(X, A; M) = Hom(S•(X, A), M)−n; we will often just refer
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to this chain complex as S•(X, A; M) but keep in mind that this chain
complex really lives in negative degrees. The singular cohomology
groups of (X, A) with coefficients in M are the homology groups of
S•(X, A; M), with the convention

Hn(X, A; M) := H−n(Hom(S•(X, A), M)).

For integral coefficients we abbreviate S•(X, A) = S•(X, A; Z) and
Hn(X, A) = Hn(X, A; Z). To avoid confusion with the boundary map
for S•(X) we will refer to the differential in S•(X) as the coboundary
map and denote it by δ.

Remark 8.2.3. A cochain complex is the same thing as a chain com-
plex, except that the differentials go the other way, so a cochain
complex consists of abelian groups Cn, n ∈ Z, and homomorphisms
∂ : Cn → Cn+1 such that ∂2 = 0. We can pass between chain com-
plexes and cochain complexes by changing the signs of the degrees:
if (C•, ∂) is a cochain complex we get a chain complex with the same
boundary maps if we set Cn := C−n, and vice versa. Traditionally the
singular cochains are viewed as a cochain complex in positive degrees.
However, apart from the overhead of introducing an unnecessary new
concept and having to convince ourselves that the tools we developed
for chain complexes work the same way for cochain complexes (while
keeping track of signs of degree changes), there are good reasons to
want singular chains and singular cochains to be objects of the same
category, as we’ll see later on.

Remark 8.2.4. Since Hom(–, M) is a functor, S•(–; M) is a functor
Pairop → Ch, and singular cohomology gives functors

Hn(–; M) : Pairop → Ab.

For a continuous map f : (X, A)→ (Y, B) we typically write

f ∗ : S•(X, A; M)→ S•(Y, B; M), f ∗ : Hn(X, A; M)→ Hn(Y, B; M)

for the induced chain map S•( f ; M) and homomorphism Hn( f ; M).

Remark 8.2.5. Since Sn(X) = Z Singn(X), the abelian group Sn(X; M)

is isomorphic to MSingn(X), i.e. the set of functions Singn(X) → M
with pointwise addition. Since Sing0(X) is the underlying set of
points of X, we have in particular that S0(X; M) is the set of all
functions MX from X to M. We can give a more explicit description
of the coboundary map in these terms: the maps ∂i : Singn+1(X)→
Singn(X) induce homomorphisms ∂∗i : MSingn(X) → MSingn+1(X), and
for ϕ ∈ MSingn(X) we have

δϕ =
n+1

∑
i=0

(−1)i∂∗i ϕ,

i.e. δϕ : Singn+1(X)→ M is given by

(δϕ)(σ) =
n+1

∑
i=0

(−1)iϕ(∂iσ).
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Exercise 8.7. Show that for A ⊆ X the relative cochains Sn(X, A) can be
identified with the subgroup of Sn(X) ∼= ZSingn(X) consisting of functions
f : Singn(X)→ Z such that f (α) = 0 for α ∈ Singn(A) ⊆ Singn(X).

Example 8.2.6 (H0). The 0th cohomology group H0(X) is by definition
the kernel of δ : S0(X) → S1(X). Here S0(X) ∼= ZX and S1(X) =

ZSing1(X), where Sing1(X) is the set of all continuous paths ∆1 → X.
For ϕ : X → Z, we see that

δϕ(σ) = ϕ(σ(1))− ϕ(σ(0)),

so that ϕ is in ker δ if and only if ϕ(x) = ϕ(y) whenever there exists a
path in X from x to y, i.e. when x and y are in the same path compo-
nent. Equivalently, ϕ is in ker δ precisely when it factors through the
quotient π0(X), and so we get a natural isomorphism

H0(X) ∼= Zπ0(X) ∼= ∏
π0(X)

Z.

(If X has finitely many components then this is isomorphic to the free
abelian group Zπ0(X) ∼=

⊕
π0(X) Z, which is H0(X), but if π0(X) is

infinite the group H0(X) is substantially larger: if π0(X) is countable
then Zπ0(X) is also countable, but Zπ0(X) is uncountable.)

Example 8.2.7. Let’s compute H∗(∗) directly from the definition. Here
Singn(∗) consists of the unique map cn : ∆n → ∗, so Sn(∗) = Z for all
n ≥ 0. For ϕ ∈ Sn(∗) the coboundary δϕ is given by

δ(ϕ)(cn+1) =
n+1

∑
i=0

(−1)iϕ(∂icn+1) =

(
n+1

∑
i=0

(−1)i

)
ϕ(cn) =

0, n even,

ϕ(cn), n odd.

Thus the chain complex S•(∗) looks like

· · · 0→ Z
0−→ Z

id−→ Z→ · · · ,

with cohomology

H∗(∗) =

Z, ∗ = 0,

0, ∗ ̸= 0.

Proposition 8.2.8. If (X, A) is a subspace pair and M an abelian group,
then there is a long exact sequence

· · · → Hn(X, A; M)→ Hn(X; M)→ Hn(A; M)→ Hn+1(X, A; M)→ · · ·

Proof. Since S•(X, A) is a chain complex of free abelian groups, if we
apply Hom(–, M) to the short exact sequence

0→ S•(A)→ S•(X)→ S•(X, A)→ 0,

we get a short exact sequence of chain complexes

0→ S•(X, A; M)→ S•(X; M)→ S•(A; M)→ 0.

This induces a long exact sequence in homology of the required
form. (Remember that Hn is a homology group in degree −n,
so the boundary map goes from Hn(A; M) = H−n(S•(A; M)) to
H−n−1(S•(X, A; M)) = Hn+1(X, A; M).)
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Remark 8.2.9. Similarly, there is a Mayer–Vietoris sequence for coho-
mology: if A, B are subspaces of X such that A◦ ∪ B◦ = X, and we
denote the inclusions as in the square

A ∩ B A

B X,

j

j′ i

i′

then by applying Proposition 4.8.1 to the long exact sequences in
cohomology for the pairs (X, B) and (A, A ∩ B) we get a long exact
sequence

· · · → Hn(X)
(i∗ ,i′∗)−−−→ Hn(A)⊕ Hn(B)

j∗−j′∗−−−→ Hn(A ∩ B) ∆−→ Hn+1(X),

where ∆ is the composite

Hn(A ∩ B) ∂−→ Hn+1(A, A ∩ B) ∼←− Hn+1(X, B)→ Hn(X).

Exercise 8.8. Use the Mayer-Vietoris sequence for cohomology to compute
H̃∗(Sn; M).

We have a dual version of the Eilenberg–Steenrod axioms:

Definition 8.2.10. An (ordinary) cohomology theory consists of

• functors hn : Pairop → Ab, n ∈ Z (we abbreviate hn(X) := hn(X, ∅)),

• natural coboundary maps δ : hn(A) → hn+1(X, A), so that the
squares

hn(A) hn+1(X, A)

hn(B) hn+1(Y, B)

δ

hn( f |A) hn( f )

δ

commute for every map f : (X, A)→ (Y, B),

with the following properties:

(1) (Long exact sequences) For every pair (X, A), the sequence of
maps

· · · → hn(X, A)→ hn(X)→ hn(A)
δ−→ hn+1(X, A)→ · · ·

induced by the maps of pairs (A, ∅) → (X, ∅) → (X, A), is a
long exact sequence.

(2) (Homotopy axiom) If f , g : (X, A)→ (Y, B) are homotopic, then
hn( f ) = hn(g) for all n ∈ Z.

(3) (Excision axiom) For (X, A) ∈ Pair, if U ⊆ A is a subset such that
U ⊆ A◦, then the homomorphisms

hn(X, A)→ hn(X \U, A \U)

induced by the inclusion (X \U, A \U) ↪→ (X, A), are isomor-
phisms for all n ∈ Z.
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(4) (Additivity axiom) If X = ⨿i∈I Xi is a disjoint union, then the
inclusions Xi ↪→ X induce an isomorphism

hn(X)
∼−→∏

i∈I
hn(Xi)

for all n.

(5) (Dimension axiom) hn(∗) = 0 if n ̸= 0.

Proposition 8.2.11. The singular cohomology groups H∗(–; M) are a coho-
mology theory for every abelian group M.

Proof. Since Hom(–, M) preserves chain homotopies by Exercise 8.6,
the chain homotopies constructed to prove homotopy invariance in
homology also give homotopy invariance for cohomology. This also
allows us to transfer the key properties of barycentric subdivision to
cochains, so our proof of locality (and hence excision) also works here.
We leave the proof of additivity as an exercise.

Exercise 8.9.

(i) Show that if we have short exact sequences 0→ Ai
ji−→ Bi

qi−→ Ci → 0 for
all i ∈ I, then there is a short exact sequence

0→∏
i∈I

Ai
∏i∈I ji−−−→∏

i∈I
Bi

∏i∈I qi−−−→∏
i∈I

Ci → 0.

(ii) Use (i) to prove the additivity axiom for cohomology: for a disjoint
union X = ⨿i∈I Xi the inclusions Xi ↪→ X induce an isomorphism

H∗(X)
∼−→∏

i
H∗(Xi).

Lemma 8.2.12. For a chain complex C• and an abelian group M, there is a
natural map

H−k(Hom(C, M))→ Hom(HkC, M),

which takes a homology class [ϕ] ∈ H−k(Hom(C, M)), represented by
ϕ : Ck → M, to the homomorphism HkC → M given by [c] 7→ ϕ(c) when
[c] is represented by c ∈ Ck.

Proof. We must check that this definition gives a well-defined homo-
morphism, and that this is natural in chain maps C• → C′• and
homomorhisms M → M′. Let us first see that we have a well-
defined homomorphism Z−k(Hom(C, M)) → Hom(HkC, M): For
ϕ ∈ Z−k(Hom(C, M)) and [c] ∈ HkC a homology class represented
by c ∈ Zk(C), then

ϕ(c + ∂c′) = ϕ(c) + ϕ(∂c′) = ϕ(c) + (δϕ)(c′) = ϕ(c),

since ϕ ∈ ker δ. This is also clearly a homomorphism. Now if
ϕ ∈ B−k(Hom(C, M)), so that ϕ = δψ, then δψ(c) = ψ(∂c) = 0 for
c ∈ Zk(C), so B−k(Hom(C, M)) is in the kernel of the homomorphism
Z−k(Hom(C, M))→ Hom(Hk(C), M) so this factors through the cok-
ernel H−k(Hom(C, M)), as required. We leave the (easy) proof of
naturality to the reader.
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Remark 8.2.13. In particular, we have natural maps

Hk(X, A; M)→ Hom(Hk(X, A), M).

These are typically not isomorphisms, however. Instead, we have a
“dual” version of the universal coefficient theorem: the cohomology
groups Hk(X, A; M) are determined by Hom(Hk(X, A), M) together
with a group Ext(Hk(X, A), M), where Ext is another algebraic de-
rived functor that we now introduce.

Exercise 8.10 (Change of coefficients in cohomology). Let (X, A) be a sub-
space pair.

(i) Show that a homomorphism of abelian groups ϕ : M → M′ induces
natural maps ϕ∗ : H∗(X, A; M)→ H∗(X, A; M′).

(ii) Let 0 → M′ i−→ M
q−→ M′′ → 0 be a short exact sequence of abelian

groups. Show that this induces a long exact sequence in cohomology

· · · → Hn(X, A; M′) i∗−→ Hn(X, A; M)
q∗−→ Hn(X, A; M′′)→ Hn+1(X, A; M′)→ · · · .

8.3 Ext of Abelian Groups

The functor Ext has a similar relationship to Hom as Tor does to the
tensor product:

Definition 8.3.1. Let A, B, be abelian groups, and take a free resolution

0 → F1
i−→ F0

q−→ A → 0 of A. Then we define Ext(A, B) to be the
cokernel of i∗ : Hom(F0, B)→ Hom(F1, B).

Remark 8.3.2. If we think of the free resolution as a chain complex
F•, then we have

H0(Hom(F•, M)) = Hom(A, M),

H−1(Hom(F•, M)) = Ext(A, M).

Lemma 8.3.3. For abelian groups A and B, Ext(A, B) is well-defined, i.e.
independent of the choice of free resolution.

Proof. If F• and F′• are two free resolutions, then they are chain
homotopy equivalent by Corollary 7.3.13. Then Hom(F•, M) and
Hom(F′•, M) are also chain homotopy equivalent, since Hom(–, M)

preserves chain homotopies by Exercise 8.6. The homology groups
H−1(Hom(F•, M)) and H−1(Hom(F′•, M)) are therefore isomorphic.

Example 8.3.4. If F is a free abelian group, then we can take 0→ 0→
F id−→ F → 0 as a free resolution, giving

Ext(F, B) = coker(Hom(F, B)→ Hom(0, B)) = 0.

Example 8.3.5. For Z/m we can take 0 → Z
m−→ Z → Z/m → 0

as a free resolution. Then m∗ : Hom(Z, B)→ Hom(Z, B) is the map
B→ B given by multiplication with m by Exercise 8.5, and so

Ext(Z/m, B) = coker(B m−→ B) = B/mB.
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Example 8.3.6. If D is a divisible abelian group (such as Q) then
Hom(–, D) preserves short exact sequences, and thus Ext(A, D) = 0
for all A.

Proposition 8.3.7. Suppose we have a short exact sequence of abelian groups
0→ A′ → A→ A′′ → 0. Then for any abelian group B there is an exact
sequence

0→ Hom(A′′, B)→ Hom(A, B)→ Hom(A′, B)→ Ext(A′′, B)→ Ext(A, B)→ Ext(A′, B)→ 0.

Proof. By Proposition 7.3.15 we can lift the short exact sequence to a
short exact sequence of free resolutions

0→ F′• → F• → F′′• → 0.

Applying Hom(–, B) gives a short exact sequence

0→ Hom(F′′, B)→ Hom(F, B)→ Hom(F′, B)→ 0

by Corollary 8.1.9. This gives the required exact sequence as its long
exact sequence in homology.

Proposition 8.3.8. Suppose we have a short exact sequence of abelian groups
0 → B′ → B → B′′ → 0. Then for any abelian group A there is an exact
sequence

0→ Hom(A, B′)→ Hom(A, B)→ Hom(A, B′′)→ Ext(A, B′)→ Ext(A, B)→ Ext(A, B′′)→ 0.

Proof. Let F• be a free resolution of A. Then by Lemma 8.1.10 we
have a short exact sequence of chain complexes

0→ Hom(F, B′)→ Hom(F, B)→ Hom(F, B′′)→ 0,

which gives the required long exact sequence in homology.

Remark 8.3.9. From this exact sequence we see that if we can find a
short exact sequence

0→ B→ I0
i−→ I−1 → 0,

where Ext(A, Ij) = 0, then we can compute Ext(A, B) as the cokernel
of i∗ : Hom(A, I0) → Hom(A, I−1). In fact, it can be shown that we
can always find such a resolution by divisible abelian groups.

8.4 The Universal Coefficient Theorem for Cohomology

Theorem 8.4.1 (Universal Coefficient Theorem for Cohomology). For
(X, A) a subspace pair and M an abelian group, there are natural short exact
sequences

0→ Ext(Hn−1(X, A), M)→ Hn(X, A; M)→ Hom(Hn(X, A), M)→ 0.

This is a special case of the following algebraic result:
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Proposition 8.4.2. Let C• be a levelwise free chain complex and M an
abelian group. Then there are natural short exact sequences

0→ Ext(Hn−1(C), M)→ H−n(Hom(C, M))→ Hom(Hn(C), M)→ 0.

Proof. The proof is very similar to that of the universal coefficient the-
orem for homology. We abbreviate Bn := Bn(C), Zn := Zn(C), Hn :=
Hn(C). Then we have short exact sequences

0→ Bn
jn−→ Zn → Hn → 0,

where Bn and Zn are free (since they are subgroups of the free abelian
group Cn), so this is a free presentation of Hn. We also have short
exact sequences

0→ Zn → Cn
∂′−→ Bn−1 → 0

where ∂′ is the boundary map in C• viewed as a map to its image. If
B′n := Bn−1 then we can regard this as a short exact sequence of chain
complexes

0→ Z• → C• → B′• → 0,

where Z• and B• have 0 differentials. Since the groups B′n are free,
this short exact sequence is levelwise splittable, and so we can apply
Hom(–, M) to get a new short exact sequence

0→ Hom(B′•, M)→ Hom(C•, M)→ Hom(Z•, M)→ 0.

Since B′• and Z• have zero differential, this gives a long exact sequence
in homology of the form

· · · → Hom(B−n−1, M)→ Hn(Hom(C, M))→ Hom(Z−n, M)
∆n−→ Hom(B−n, M)→ · · · ,

where we write ∆ for the boundary map in the long exact sequence
to reduce confusion. We therefore have short exact sequences

0→ coker ∆n+1 → HnHom(C, M)→ ker ∆n → 0.

Unwinding the definition of ∆n, we see that

∆n = j∗−n : Hom(Z−n, M)→ Hom(B−n, M).

Since j−n gives a free presentation of H−n, we get

ker ∆n ∼= Hom(H−n, M), coker ∆n ∼= Ext(H−n, M),

as required.

Remark 8.4.3. With a bit more work, it can be shown that the short
exact sequences in the universal coefficient theorem are splittable
(but the splittings are not natural). Thus, there are non-canonical
isomorphisms

Hn(X, A; M) ∼= Hom(Hn(X, A), M)⊕ Ext(Hn−1(X, A), M).

Corollary 8.4.4. If a continuous map of pairs f : (X, A)→ (Y, B) induces
isomorphisms f∗ : H∗(X, A)→ H∗(Y, B) for all ∗, then f ∗ : H∗(Y, B)→
H∗(X, A) are also isomorphisms.
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Proof. Apply the 5-Lemma to the map of short exact sequences from
the universal coefficient theorem.

Corollary 8.4.5. If D is a divisible abelian group (such as Q), then there is
a natural isomorphism

H∗(X, A; D)
∼−→ Hom(H∗(X, A), D).

Remark 8.4.6. In particular, if Hn(X, A) is a finite-rank abelian group,
then Hn(X, A; Q) and Hn(X, A; Q) are Q-vector spaces of the same
dimension.

Example 8.4.7. Let us compute H∗(RPn) using the short exact se-
quences

0→ Ext(Hn−1(RPn), Z)→ Hn(RPn)→ Hom(Hn(RPn), Z)→ 0.

Recall that

Hi(RPn) ∼=


Z/2, i odd, i < n,

0, i even > 0 or > n,

Z, i = 0 or i = n odd.

Thus we have short exact sequences

0→ 0→ H0(RPn)→ Hom(Z, Z)→ 0,

0→ Ext(Z/2, Z)→ Hi(RPn)→ 0→ 0, (i even ≤ n)

0→ 0→ Hi(RPn)→ Hom(Z/2, Z)→ 0, (i odd < n)

0→ 0→ Hi(RPn)→ Hom(Z, Z)→ 0, (i = n odd).

Here Ext(Z/2, Z) ∼= Z/2 and Hom(Z/2, Z) = 0, so we conclude

Hi(RPn) ∼=


Z, i = 0 or i = n odd,

Z/2, 0 < i ≤ n even,

0, otherwise.

Remark 8.4.8. Suppose A is a finitely generated abelian group. Then
by the classification of finitely generated abelian groups we can write
A ∼= F⊕ T where F ∼= Zr is free and T ∼=

⊕
i Z/mi is a torsion group.

We then have

Hom(A, Z) ∼= Hom(F, Z)⊕Hom(T, Z) ∼=
⊕

r
Hom(Z, Z)⊕

⊕
i

Hom(Z/mi, Z).

Here Hom(Z, Z) ∼= Z while Hom(Z/mi, Z) ∼= 0 so we have an
isomorphism Hom(A, Z) ∼= F. On the other hand (as it is easy to see
that Ext(–, B) also takes direct sums to products)

Ext(A, Z) ∼= Ext(F, Z)⊕Ext(T, Z) ∼=
⊕

r
Ext(Z, Z)⊕

⊕
i

Ext(Z/mi, Z).

Here Ext(Z, Z) = 0 while Ext(Z/mi, Z) ∼= Z/mi, hence we have
an isomorphism Ext(A, Z) ∼= T. We can apply this to get a (non-
canonical) description of the cohomology groups of a space X whose
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homology groups HnX are all finitely generated: If we write Hn(X) ∼=
Fn ⊕ Tn where Fn ∼= Zrn is free and Tn is a torsion group, then

Hom(Hn(X), Z) ∼= Hom(Fn, Z) ∼= Fn,

while
Ext(Hn(X), Z) ∼= Ext(Tn, Z) ∼= Tn,

so the universal coefficient theorem gives (non-canonical) isomor-
phisms

Hn(X) ∼= Fn ⊕ Tn−1.

So in this case torsion in homology shifts up by one degree in coho-
mology, while the free groups stay put.

8.5 Cellular Cohomology

Suppose X is a cell complex, with Γk the set of k-dimensional cells.
Then we have isomorphisms

H∗(Xk, Xk−1; M) ∼= H̃∗(
∨
Γk

Sk; M) ∼= ∏
Γk

H̃∗(Sk; M) ∼=

MΓk , ∗ = k,

0, ∗ ̸= k.

We can define a cellular cohomology chain complex by taking Ck
cell(X; M) :=

Hk(Xk, Xk−1; M) in degree −k, with differential the composite

δ : Hk(Xk, Xk−1; M)→ Hk(Xk; M)→ Hk+1(Xk+1, Xk; M),

where the first map uses the inclusion (Xk, ∅)→ (Xk, Xk−1) and the
second is the connecting homomorphism in the cohomology long
exact sequence for the pair (Xk+1, Xk). Just as for cellular homology
we get δ2 = 0, and by studying the long exact sequences for the pairs
(Xk, Xk−1) we get:

Proposition 8.5.1. H−k(C•cell(X; M)) ∼= Hk(X; M).

We also have the chain complex Hom(Ccell
• (X), M), where we al-

ready understand the differential. Luckily, this is isomorphic to the
cellular cochain complex:

Proposition 8.5.2. If X is a cell complex, there is an isomorphism of chain
complexes

C•cell(X; M) ∼= Hom(Ccell
• (X), M).

For the proof we need the following observation, which is left as
an exercise:

Exercise 8.11. Let (X, A) be a subspace pair and M an abelian group. Show
that the natural maps H∗(–; M) → Hom(H∗(–), M) fit in a commutative
square

Hn(A; M) Hn+1(X, A; M)

Hom(Hn(A); M) Hom(Hn+1(X, A); M),

δ

∂∗

where ∂ and δ denote the connecting maps in the homology and cohomology
long exact sequences for (X, A), respectively.
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Proof of Proposition 8.5.2. In degree −k, we have

Ck
cell(X; M) = Hk(Xk, Xk−1; M), Hom(Ccell

k (X), M) = Hom(Hk(Xk, Xk−1); M).

We have a natural map

Hk(Xk, Xk−1; M)→ Hom(Hk(Xk, Xk−1); M),

and by the universal coefficient theorem this is surjective with kernel
Ext(Hk−1(Xk, Xk−1), M), which is 0 since Hk−1(Xk, Xk−1) = 0. Thus
we have degreewise isomorphisms Ck

cell(X; M) ∼= Hom(Ccell
k (X), M),

and we need to show these are compatible with the differentials. To
see this we will show that there is a commutative diagram

Hk(Xk, Xk−1; M) Hk(Xk; M) Hk+1(Xk+1, Xk; M)

Hom(Hk(Xk, Xk−1), M) Hom(Hk(Xk), M) Hom(Hk+1(Xk+1, Xk), M).

∼= ∼=

Here the left-hand square commutes by naturality, since both maps are
induced by the map of singular chain complexes from the inclusion
(Xk, ∅) → (Xk, Xk−1), while the right-hand square commutes by
Exercise 8.11.

Since we know the differential in Hom(Ccell
• (X), M), we get the

following description of the differential in cellular cohomology:

Corollary 8.5.3. For α ∈ Γk+1 let fα : Sk → Xk be the attaching map for the
corresponding cell, and for β ∈ Γk let qβ : Xk → Xk/Xk−1

∼=
∨

Γk
Sk → Sk

be the projection to the sphere corresponding to β. Then the differential
Ck

cell(X; M) → Ck+1
cell (X; M) corresponds to the map MΓk → MΓk+1 that

takes f : Γk → M to the function

α ∈ Γk+1 7→ ∑
β∈Γk

deg(qβ fα) f (β).

Example 8.5.4. Let us compute H∗(RPn) using cellular cohomology:
Recall that this has a cell structure with a single cell ei in degree i,
0 ≤ i ≤ n, and that the cellular chain complex looks like

· · · → 0→ Z→ · · · → Z
0−→ Z

2−→ Z
0−→ Z→ 0→ · · · ,

with the non-zero groups in degrees 0, 1, . . . , n. Applying Hom(–, Z),
we get

· · · → 0→ Z
0−→ Z

2−→ Z
0−→ · · · → Z→ 0→ · · · ,

with the non-zero groups in degrees −n,−n + 1, . . . , 0. We get cocy-
cles

Zi =


Z, i even, −n ≤ i ≤ 0,

Z, i = −n odd,

0, otherwise,
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with coboundaries

Bi =


0 i = 0,

2Z, i even, −n ≤ i < 0

0, otherwise.

The cohomology is therefore given as

Hi(RPn) ∼=


Z, i = 0 or i = n odd,

Z/2, 0 < i ≤ n even,

0, otherwise.





9
Homology of Products

Our next goal is to understand the relationship between the homology
of spaces X, Y and the homology of their cartesian product X × Y.
This will have two parts: First, we will define the tensor product of
chain complexes in §9.1, where we also prove a result that describes
the homology of a tensor product of levelwise free chain complexes.
Then in §9.2 we will prove that the singular chain complex S•(X×Y)
is chain homotopy equivalent to the tensor product S•(X)⊗ S•(Y)
(the Eilenberg–Zilber theorem) and use this to describe the homology
of X × Y (the Künneth theorem). In §9.3 we consider an explicit
formula for one of the maps in this chain homotopy equivalence,
the Alexander–Whitney map. Next we look at the Künneth theorem
for cohomology in §9.4, which requires a finiteness assumption on
the spaces involved, and finally we consider relative versions of the
Eilenberg–Zilber and Künneth theorems in §9.5.

9.1 Tensor Products of Chain Complexes

Definition 9.1.1. A graded abelian group A∗ is a sequence of abelian
groups An, n ∈ Z, and a homomorphism of graded abelian groups
ϕ : A∗ → B∗ is just a sequence of homomorphisms ϕn : An → Bn.
These assemble into a category grAb.

Remark 9.1.2. We can view homology as a functor H∗ : Ch→ grAb.

Definition 9.1.3. If A∗ and B∗ are graded abelian groups, their tensor
product A∗ ⊗ B∗ is the graded abelian group with

(A∗ ⊗ B∗)n =
⊕

p+q=n
Ap ⊗ Bq.

Remark 9.1.4. By the universal property of the tensor product of
abelian groups, a homomorphism of graded abelian groups A∗ ⊗
B∗ → C∗ corresponds to a family of bilinear maps Ap × Bq → Cp+q.

Definition 9.1.5. If (C•, ∂C) and (D•, ∂D) are chain complexes, their
tensor product is the chain complex C• ⊗ D• with underlying graded
abelian groups the corresponding tensor product of graded abelian
groups, and with differential ∂ : (C⊗ D)n → (C⊗ D)n−1 determined
on a generator c⊗ d (c ∈ Cp, d ∈ Dq, p + q = n) by

∂(c⊗ d) = ∂Cc⊗ d + (−1)pc⊗ ∂Dd
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We have

∂2(c⊗ d) = ∂2
Cc⊗ d+(−1)p−1∂Cc⊗ ∂Dd+(−1)p∂Cc⊗ ∂Dd+(−1)2pc⊗ ∂2

Dd = 0,

so this is indeed a chain complex.

Remark 9.1.6. Other choices of sign are possible, but note that we
need to put some non-trivial signs in order to get ∂2 = 0.

Notation 9.1.7. If A is an abelian group, we write A[n] for the chain
complex with A in degree n and 0 elsewhere; we also denote the
underlying graded abelian group by A[n].

Remark 9.1.8. The associativity and unitality of the tensor product of
abelian groups gives associativity and unitality for the tensor products
of graded abelian groups and chain complexes: given graded abelian
groups A∗, B∗, C∗ we have canonical isomorphisms

A∗ ⊗ (B∗ ⊗ C∗) ∼= (A∗ ⊗ B∗)⊗ C∗, A∗ ⊗Z[0] ∼= A∗,

while given chain complexes A•, B•, C• we have canonical isomor-
phisms

A• ⊗ (B• ⊗ C•) ∼= (A• ⊗ B•)⊗ C•, A• ⊗Z[0] ∼= A•.

Remark 9.1.9. The tensor product of chain complexes is also sym-
metric, but this requires changing some signs: we define the twist
isomorphism

τ : C• ⊗ D•
∼−→ D• ⊗ C•

on generators c⊗ d for c ∈ Cp, d ∈ Dq by

τ(c⊗ d) = (−1)pqd⊗ c.

Then τ is a chain map:

τ∂(c⊗ d) = τ(∂c⊗ d + (−1)pc⊗ ∂d)

= (−1)(p−1)qd⊗ ∂c + (−1)p(−1)p(q−1)∂d⊗ c

= (−1)pq(∂d⊗ c + (−1)qd⊗ ∂c)

= ∂τ(c⊗ d).

Note that we again need to put some non-trivial signs for τ to be a
chain map. We define the twist isomorphism A∗ ⊗ B∗

∼−→ B∗ ⊗ A∗
in the same way, so that it is compatible with the forgetful functor
Ch→ grAb.

Exercise 9.1. Let I• denote the chain complex with I1 = Z, I0 = Z{[0], [1]}
and In = 0 otherwise, with differential ∂ : I1 → I0 given by ∂(1) = [1]− [0].
Show that a chain homotopy between chain maps C• → D• is the same
thing as a chain map C• ⊗ I• → D•. (Thus if we think of I• as an “algebraic
interval”, chain homotopies are an algebraic version of homotopies between
continuous maps.)

Exercise 9.2. Let C• be a chain complex.

(i) Prove that the functor C• ⊗ – preserves chain homotopies and levelwise
splittable short exact sequences of chain complexes. [Hint: For chain
homotopies you can use Exercise 9.1.]
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(ii) If C• is levelwise free, show that C• ⊗ – preserves all short exact se-
quences of chain complexes.

Exercise 9.3. Show that if two chain complexes differ only by the signs of the
boundary maps, then they are isomorphic.

Exercise 9.4.

(i) Show that for M an abelian group and C•, D• chain complexes, there is
a natural bijection between chain maps C• → Hom(D, M)• and chain
maps C• ⊗D• → M[0]. [With our sign convention for the differential in
Hom(D, M)• this bijection involves some signs. Alternatively, we can
define the differential δϕ for ϕ : D−n → M to be given by (δϕ)(d) =

(−1)n+1ϕ(∂d) (without changing the homology, by Exercise 9.3).]

(ii)∗ For chain complexes C•, D•, define a chain complex Hom(C, D)• so
that there is a natural bijection between chain maps C• ⊗ D• → E• and
chain maps C• → Hom(D•, E•). [Hint: Do it first for graded abelian
groups and then figure out the differential. This again involves some
signs, and if you want a sign convention that recovers our previous
definition of Hom(D, M) as Hom(D, M[0]) then the bijection between
maps also needs some signs.]

Lemma 9.1.10. If C•, D• are chain complexes, then there is a natural map
of graded abelian groups

H∗(C)⊗ H∗(D)→ H∗(C⊗ D),

compatible with the associativity, unitality, and symmetry isomorphisms for
the two tensor products.

Proof. On generators [c] ∈ HpC, [d] ∈ HqD represented by c ∈ Cp and
d ∈ Dq, we want to assign [c⊗ d] ∈ Hp+q(C⊗ D). It is clear from the
formula for ∂ in C⊗ D that this is again a cycle, and we have

(c + ∂c′)⊗ d = c⊗ d + ∂c′ ⊗ d = c⊗ d + ∂(c′ ⊗ d)

since d is a cycle, and similarly in the other variable, so that this
map is well-defined. We leave the rest of the (easy) argument to the
reader.

This natural map is typically not an isomorphism. However, in the
case where one of the chain complexes is levelwise free we have an
algebraic description of the homology of the tensor product. To state
this, we need some notation:

Definition 9.1.11. Let A∗ and B∗ be graded abelian group. We define
the graded abelian group Tor(A, B)∗ by

Tor(A, B)n =
⊕

p+q=n
Tor(Ap, Bq).

Proposition 9.1.12. Let C• and D• be chain complexes, and suppose C• is
levelwise free. Then there are natural short exact sequences

0→ (H∗(C)⊗H∗(D))n → Hn(C⊗D)→ Tor(H∗(C), H∗(D))n−1 → 0.

Note that this is a generalization of Proposition 7.4.2, which was
the algebraic input to the universal coefficient theorem in homology.
The proof will also be essentially the same, but we first need the
following observation:
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Lemma 9.1.13. Suppose C• is a levelwise free chain complex with zero
differentials. Then for any chain complex D•, the natural map

C∗ ⊗ H∗(D) ∼= H∗(C)⊗ H∗(D)→ H∗(C⊗ D)

is an isomorphism.

Proof. Since the differentials in C• are zero, the differential ∂ : (C• ⊗
D•)n → (C• ⊗ D•)n−1 is given on c⊗ d with c ∈ Cp, d ∈ Dq (p + q =

n) by
∂(c⊗ d) = (−1)pc⊗ ∂d.

Since C• is levelwise free, so that tensoring with Cn preserves short
exact sequences, we therefore have isomorphisms

Zn(C⊗ D) ∼=
⊕

p+q=n
Cp ⊗ Zq(D),

Bn(C⊗ D) ∼=
⊕

p+q=n
Cp ⊗ Bq(D),

Hn(C⊗ D) ∼=
⊕

p+q=n
Cp ⊗ Hq(D),

as required.

Proof of Proposition 9.1.12. We abbreviate Zk := Zk(C), Bk := Bk(C),
and Hk := Hk(C). Then we have short exact sequences

0→ Bk
jk−→ Zk → Hk → 0,

and since Ck is levelwise free this is a free presentation of Hk. As in
the proof of Proposition 7.4.2 we also have a short exact sequence of
chain complexes

0→ Z• → C•
∂′−→ B′• → 0,

where B′n = Bn−1 and the chain complexes Z• and B′• have zero
differentials, with ∂′ denoting the differential in C• viewed as a
homomorphism to its image.

This short exact sequence is levelwise splittable since B′n is a free
abelian group (being a subgroup of the free abelian group Cn−1), so
by Exercise 9.2 we can tensor with D• and get another levelwise split
short exact sequence

0→ Z• ⊗ D• → C• ⊗ D• → B′• ⊗ D• → 0.

This gives a long exact sequence in homology, and by Lemma 9.1.13

this looks like

· · · ∆n+1−−→ (Z∗⊗H∗(D))n → Hn(C⊗D)→ (B∗⊗H∗(D))n−1
∆n−→ (Z∗⊗H∗(D))n−1 → · · · ,

where ∆n is the boundary map in the long exact sequence. We
therefore have short exact sequences

0→ coker ∆n+1 → Hn(C⊗ D)→ ker ∆n → 0.
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Unwinding the definition of ∆n as in the proof of Proposition 7.4.2
we see that

∆n+1 = (j⊗ id)n : (B∗ ⊗ H∗(D))n → (Z∗ ⊗ H∗(D))n.

Since jp gives a free presentation of Hp(C) we therefore have isomor-
phisms

coker ∆n+1
∼= (H∗(C)⊗ H∗(D))n,

ker ∆n+1
∼= Tor(H∗(C), H∗(D))n,

which give the short exact sequences we want.

Remark 9.1.14. With a bit more work it can be shown that the short
exact sequences in Proposition 9.1.12 are always splittable, but the
splittings are not natural. Thus there are non-canonical isomorphisms

Hn(C⊗ D) ∼= (H∗(C)⊗ H∗(D))n ⊕ Tor(H∗(C), H∗(D))n−1.

The following consequence might seem trivial, but will be useful
to us in the next section:

Corollary 9.1.15. If X and Y are contractible topological spaces, then

H∗(S•(X)⊗ S•(Y)) ∼=

Z, ∗ = 0,

0, ∗ ̸= 0

Remark 9.1.16. The proof of Proposition 9.1.12 works the same over
any principal ideal domain R, using the tensor product of R-modules.
In particular, if k is a field, then (as any k-module is free and Tor
vanishes) we have natural isomorphisms

H∗(C⊗k D) ∼= H∗(C)⊗k H∗(D)

for arbitrary chain complexes C• and D• of k-vector spaces.

9.2 The Eilenberg–Zilber and Künneth Theorems

If X and Y are topological spaces, we can apply Proposition 9.1.12

to S•(X) and S•(Y) to get a description of H∗(S(X) ⊗ S(Y)). We
are now going to prove that the chain complex S•(X) ⊗ S•(Y) is
chain homotopy equivalent to S•(X×Y), so that this actually gives a
description of the homology of X×Y.

Note that in degree 0 we have

(S•(X)⊗ S•(Y))0 ∼= S0(X)⊗ S0(Y) ∼= ZX⊗ZY

There is a canonical isomorphism between ZX⊗ZY and Z(X×Y),
and this gives a canonical isomorphism S0(X × Y) ∼−→ (S•(X) ⊗
S•(Y))0 defined on generators (x, y) with x ∈ X, y ∈ Y by (x, y) 7→
x⊗ y.

Proposition 9.2.1.

(i) There exists a natural chain map ϕ : S•(X × Y) → S•(X)⊗ S•(Y)
given by the canonical isomorphism in degree 0.



142 rune haugseng

(ii) Any two such natural chain maps are naturally chain homotopic.

Proof. We will use the method of acyclic models to show that such
maps exist without having to give an explicit geometric or combinato-
rial construction.

For (i), we will inductively define ϕX,Y
n : Sn(X × Y) → (S•(X)⊗

S•(Y))n assuming we have already defined natural maps ϕX,Y
k for

k < n, such that ∂ϕX,Y
k = ϕX,Y

k−1∂ for k < n. At n = 0 we start with the
canonical isomorphism. If (σ, τ) : ∆n → X×Y is an n-simplex, then
(σ, τ) = (σ× τ)∗δn, where δn is the diagonal ∆n → ∆n ×∆n. Thus we
first consider the universal case of δn and then set ϕX,Y

n (σ, τ) = (σ∗ ⊗
τ∗)ϕ

∆n ,∆n
n (δn) (which must be true for naturality to hold); extending

this definition linearly we then get natural homomorphisms ϕX,Y
n .

There are two cases to consider: If n = 1, then we want an element
ϕ1(δ1) such that

∂ϕ1(δ1) = ϕ0(∂δ1) = ϕ0(([1], [1])− ([0], [0])) = [1]⊗ [1]− [0]⊗ [0].

We can take ϕ1(δ1) = [0]⊗ ι1 + ι1 ⊗ [1]; then

∂ϕ1(δ1) = [0]⊗ ([1]− [0]) + ([1]− [0])⊗ [1] = −[0]⊗ [0] + [1]⊗ [1].

For n > 1, we want to find an element ϕn(δn) ∈ (S•(∆n)⊗ S•(∆n))n

such that ∂ϕn(δn) = ϕn−1(∂δn). We know by Corollary 9.1.15 that
Hn−1(S•(∆n)⊗ S•(∆n) = 0, so the right-hand side is a boundary if
and only if it is a cycle. We have ∂ϕn−1(∂δn) = ϕn−2(∂

2δn) = 0 since
we know ϕn−1 commutes with ∂, so some suitable class ϕn(δn) exists.

It remains to check that the resulting homomorphisms ϕX,Y
n satisfy

∂ϕX,Y
n = ϕX,Y

n−1∂. It’s enough to check this on a singular simplex
(σ, τ) : ∆n → X×Y, for which we have

∂ϕX,Y
n (σ, τ) = ∂(σ∗⊗ τ∗)ϕn(δn) = (σ∗⊗ τ∗)∂ϕn(δn) = (σ∗⊗ τ∗)ϕn−1(∂δn) = ϕX,Y

n−1((σ× τ)∗∂δn) = ϕX,Y
n−1(∂(σ, τ).

This proves (i).
Now suppose we have two such natural chain maps ϕ and ϕ′. To

prove (ii) we want to define natural maps

sX,Y
n : Sn(X×Y)→ (S•(X)⊗ S•(Y))n+1

such that ∂sn + sn−1∂ = ϕ′n − ϕn.
For n = 0 we know ϕ′0 = ϕ0 so we can take s0 = 0 (since s−1 = 0

as S−1(X×Y) = 0). Suppose we have defined sk for k < n. We again
start by defining sn(δn); this should satisfy

∂sn(δn) = ϕ′n(δn)− ϕn(δn)− sn−1(∂δn).

Since Hn(S•(∆n)⊗ S•(∆n)) = 0 to see that such an element sn(δn)

exists it’s enough to check that the right-hand side is a cycle:

∂(ϕ′n(δn)−ϕn(δn)− sn−1(∂δn)) = ∂(ϕ′n−ϕn)(δn)+ sn−2(∂
2δn)− (ϕ′n−1−ϕn−1)(∂δn) = 0,

since ϕ′ − ϕ is a chain map. Now we as usual set sX,Y
n (σ, τ) = (σ∗ ⊗

τ∗)sn(δn) and extend linearly to obtain natural homomorphisms. We
now just need to check this gives a chain homotopy:

(∂sn + sn−1∂)(σ, τ) = ∂(σ∗⊗ τ∗)(∂sn(δn)+ sn(∂δn) = (σ∗⊗ τ∗)(ϕ
′
nδn−ϕnδn) = ϕ′n(σ, τ)−ϕn(σ, τ).

This proves (ii).
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Proposition 9.2.2.

(i) There exists a natural chain map µ : S•(X)⊗ S•(Y) → S•(X × Y)
such that for x ∈ X, y ∈ Y, σ : ∆p → X, τ : ∆q → Y, we have

µ(x⊗ τ) = x× τ : ∆q ∼= ∆0 × ∆q → X×Y,

µ(σ⊗ y) = σ× y : ∆p ∼= ∆p × ∆0 → X×Y.

(ii) Any two such natural chain maps are chain homotopic.

For the first part we can use the exterior multiplication maps from
Theorem 6.1.1:

Exercise 9.5. Check that the properties of the exterior multiplication maps
µn,m : Sn(X) × Sm(Y) → Sn+m(X × Y) imply that these fit together into a
natural chain map

µ : S•(X)⊗ S•(Y)→ S•(X×Y).

Proof. We need to prove the second part of the statement. Assume
we have two natural chain maps µ and µ′ as in (i) (in fact we will
only use that they agree in degree 0). Then we want to define maps
hn : (S•(X)⊗ S•(Y))n → Sn+1(X×Y) such that

∂hn + hn−1∂ = µ′n − µn.

If n = 0 we have µ0 = µ′0 so we can take h0 = 0 (as h−1 is necessarily
0). Suppose we have already defined hk for k < n. Then to define hn

we want to define maps hp,q : Sp(X)⊗ Sq(Y) → Sn+1(X × Y) where
p + q = n. We start with the universal case X = ∆p, Y = ∆q, where
we want to define hp,q(ιp ⊗ ιq). This should satisfy

∂hp,q(ιp ⊗ ιq) = µ′n(ιp ⊗ ιq)− µn(ιp ⊗ ιq)− hn−1(∂(ιp ⊗ ιq)).

Since Hn(∆p × ∆q) = 0, it’s enough to check that the right-hand side
is a cycle:

∂(µ′n−µn− hn−1∂)(ιp⊗ ιq) = (∂(µ′n−µn)+ hn−2∂2− (µ′n−1−µn−1)∂)(ιp⊗ ιq) = 0.

Now for σ : ∆p → X, τ : ∆q → Y, we set hn(σ⊗ τ) = (σ× τ)∗hn(ιp ⊗
ιq) and extend linearly, and as usual the description of ∂hn(ιp ⊗ ιq)

implies that this is a chain homotopy.

We spare the reader from the proof of the following statement,
which again goes by exactly the same strategy:

Proposition 9.2.3.

(i) Any two natural chain maps S•(X×Y)→ S•(X×Y) given by the
identity in degree 0 are naturally chain homotopic.

(ii) Any two natural chain maps S•(X) ⊗ S•(Y) → S•(X) ⊗ S•(Y)
given by the identity in degree 0 are naturally chain homotopic.

Remark 9.2.4. There does exist a general theorem on acyclic models
of which all these results are a special case, but this is a bit beyond
the scope of this course.
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Theorem 9.2.5 (Eilenberg–Zilber). The chain complexes S•(X)⊗ S•(Y)
and S•(X×Y) are naturally chain homotopy equivalent.

Proof. By Proposition 9.2.1 and Proposition 9.2.2 there are natural
chain maps ϕ : S•(X×Y)→ S•(X)⊗ S•(Y) and µ : S•(X)⊗ S•(Y)→
S•(X×Y). Now Proposition 9.2.3 implies that the composites µϕ and
ϕµ are naturally chain homotopic to the respective identities, so this
is a natural chain homotopy equivalence.

In particular, this implies that H∗(X × Y) is isomorphic to the
homology of S•(X) ⊗ S•(Y). Applying Proposition 9.1.12 to this
tensor product, we thus get:

Corollary 9.2.6 (Künneth Theorem). For topological spaces X and Y,
there are natural short exact sequences

0→ (H∗(X)⊗H∗(Y))n → Hn(X×Y)→ Tor(H∗(X), H∗(Y))n−1 → 0.

Remark 9.2.7. By Remark 9.1.14 these short exact sequences are
splittable, so that there are non-canonical isomorphisms

Hn(X×Y) ∼=
⊕

p+q=n
Hp(X)⊗ Hq(Y)⊕

⊕
i+j=n−1

Tor(Hi(X), Hj(Y)).

Example 9.2.8. For spheres Sn and Sm (n, m > 0) we get

H∗(Sn × Sm) ∼=

Z, ∗ = 0, n, m, n + m,

0, otherwise,

if n ̸= m, while if n = m we have

H∗(Sn × Sn) ∼=


Z, ∗ = 0, 2n,

Z⊕Z, ∗ = n,

0, otherwise,

Exercise 9.6. Use the Künneth Theorem to compute the homology of RP2 ×
RP2.

Remark 9.2.9. If R is an arbitrary commutative ring, we can tensor For abelian groups A, B and a commu-
tative ring R, there is a natural isomor-
phism (A⊗ R)⊗R (B⊗ R) ∼= (A⊗ B)⊗
R. This gives a natural isomorphism
(S•(X) ⊗ S•(Y)) ⊗ R ∼= S•(X; R) ⊗R
S•(Y; R).

the chain homotopy equivalence of the Eilenberg–Zilber Theorem
with R to obtain a chain homotopy equivalence between S•(X; R)⊗R

S•(Y; R) and S•(X × Y; R). Since Proposition 9.1.12 works over any
principal ideal domain we obtain a version of the Künneth theorem
for H∗(X×Y; R) when R is a PID. In particular, if k is a field (so that
Tork vanishes) we have a natural isomorphism

H∗(X×Y; k) ∼= H∗(X; k)⊗k H∗(Y; k).

9.3 The Alexander–Whitney Map

Later on we are going to use the chain homotopy equivalence be- There are also explicit definitions of
chain maps S•(X) ⊗ S•(Y) → S•(X ×
Y), in the other direction, but we will
not need these.

tween S•(X×Y) and S•(X)⊗ S•(Y) to define product structures on
cohomology. For some purposes it is convenient to have an explicit



algebraic topology i 145

formula for these products on the chain level, for which we need an
explicit choice of the chain map S•(X×Y)→ S•(X)⊗ S•(Y). In this
section, we will define the Alexander–Whitney map, which is one such
chain map.

Definition 9.3.1. Let αn
p : ∆p ↪→ ∆n be the inclusion of the p-face with

vertices 0, 1, . . . , p, and let ωn
q : ∆q ↪→ ∆n be the inclusion of the q-face

with vertices n− q, . . . , n− 1, n.

Definition 9.3.2. The Alexander–Whitney map

awn : Sn(X×Y)→ (S•(X)⊗ S•(Y))n

is defined on a singular simplex (σ, τ) : ∆n → X×Y by

aw(σ, τ) = ∑
p+q=n

σ ◦ αn
p ⊗ τ ◦ωn

q = (σ∗ ⊗ τ∗)

(
∑

p+q=n
αn

p ⊗ωn
q

)

Proposition 9.3.3. The Alexander–Whitney maps are a natural family of
chain maps.

For the proof we need the following relations between the α’s and
ω’s, which we leave to the reader to check:

Lemma 9.3.4.

di ◦ αn−1
p =

αn
p+1 ◦ di, i ≤ p

αn
p, i > p,

αn
p+1 ◦ dp+1 = αn

p,

di ◦ωn−1
q =

ωn
q , i ≤ n− 1− q,

ωn
q+1 ◦ di−n+1+q, i > n− 1− q,

ωn
q+1 ◦ d0 = ωn

q .

Proof. Naturality is clear from the definition, so it is enough to show
that ∂aw(σ, τ) = aw(∂(σ, τ)). Here

aw(∂(σ, τ)) = aw

(
∑

i
(−1)i(∂iσ, ∂iτ)

)
= (σ∗⊗ τ∗)

(
∑

i
(−1)i ∑

p+q=n−1
di ◦ αn−1

p ⊗ di ◦ωn−1
q

)
,

∂aw(σ, τ) = (σ∗ ⊗ τ∗)

(
∑

p+q=n
∂(αn

p ⊗ωn
q )

)
.

It thus suffices to establish the identity

∑
p+q=n

∂(αn
p ⊗ωn

q ) =
n

∑
i=0

(−1)i ∑
p+q=n−1

di ◦ αn−1
p ⊗ di ◦ωn−1

q .

Here we have

∂(αn
p ⊗ωn

q ) = ∂αn
p ⊗ωn

q + (−1)pαn
p ⊗ ∂ωn

q

=
p

∑
i=0

(−1)iαn
p ◦ di ⊗ωn

q +
q

∑
j=0

(−1)p+jαn
p ⊗ωn

q ◦ dj.
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If s + t = n − 1 then the component of the left-hand side in our
equation in Ss(∆n)⊗ St(∆n) is

s+1

∑
i=0

(−1)iαn
s+1 ◦ di ⊗ωn

t +
t+1

∑
j=0

(−1)s+jαn
s ⊗ωn

t+1 ◦ dj,

while on the right-hand side it is

n

∑
i=0

(−1)idi ◦ αn−1
s ⊗ di ◦ωn−1

t .

It suffices to check that we have

s+1

∑
i=0

(−1)iαn
s+1 ◦ di⊗ωn

t +
t+1

∑
j=0

(−1)s+jαn
s ⊗ωn

t+1 ◦ dj =
n

∑
i=0

(−1)idi ◦ αn−1
s ⊗ di ◦ωn−1

t ,

which can be done using the identities from Lemma 9.3.4.

9.4 (⋆) A Künneth Theorem for Cohomology

Although there is a natural chain map S•(X)⊗ S•(Y)→ S•(X×Y),
this is in general not a chain homotopy equivalence. To get a Künneth
formula in cohomology we therefore need to put some restrictions on
the spaces involved.

Theorem 9.4.1. If X and Y are finite type cell complexes, then there are
natural short exact sequences

0→ (H∗(X)⊗H∗(Y))−n → Hn(X×Y)→ Tor(H∗(X), H∗(Y))−n−1 → 0.

These are splittable, so we have (non-canonical) isomorphisms

Hn(X×Y) ∼=
⊕

p+q=n
Hp(X)⊗ Hq(Y)⊕

⊕
i+j=n+1

Tor(Hi(X), H j(Y)).

For chain complexes C•, D• and abelian groups M, N we can also
define a natural chain map

Hom(C, M)• ⊗Hom(D, N)• → Hom(C⊗ D, M⊗ N)•,

defined degreewise by the maps

Hom(C−p, M)⊗Hom(D−q, N)→ Hom(C−p ⊗ D−q, N)

given by tensoring homomorphisms together.

Lemma 9.4.2. Suppose C• and D• are chain complexes such that Cn and
Dn are finitely generated free abelian groups for every n, and Cn = Dn = 0
for n < 0 (or, for sufficiently large negative n). Then the natural map

Hom(C, M)• ⊗Hom(D, N)• → Hom(C⊗ D, M⊗ N)•,

is an isomorphism.

Proof. This essentially follows because everything in sight commutes
with finite direct sums and the fact that if A ∼= ZS is a finitely
generated free abelian group then Hom(A, Z) ∼= ZS ∼= ZS is again
free; we leave the details to the interested reader.
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If X and Y are finite type cell complexes, then the lemma applies
to Ccell

• (X) and Ccell
• (Y), and so we have a natural isomorphism

C•cell(X)⊗ C•cell(Y) ∼= Hom(Ccell(X), Z)• ⊗Hom(Ccell(X), Z)•
∼= Hom(Ccell(X)⊗ Ccell(Y), Z)•.

It is not hard to show that for any cell complex X there exists a (non-
canonical) chain map Ccell

• (X) → S•(X) that in homology gives the
isomorpism between the cellular and singular homology of X. This
is then a chain homotopy equivalence by the following result from
homological algebra:

Fact 9.4.3. Any quasi-isomorphism (meaning a chain map that gives
isomorphisms on homology groups) between levelwise free chain complexes
is a chain homotopy equivalence (i.e. there exists some choice of a chain
homotopy inverse).

Moreover, for any chain complex C• the functor –⊗ C• preserves
chain homotopies, as does the functor Hom(–, Z). Thus we have chain
homotopy equivalences between C•cell(X) ⊗ C•cell(Y) and S•(X) ⊗
S•(Y) and between Hom(Ccell(X)⊗ Ccell(Y), Z)• and Hom(S•(X)⊗
S•(Y), Z)•. Applying the Eilenberg–Zilber theorem, the latter is also
chain homotopy equivalent to Hom(S•(X × Y), Z[0]) ∼= S•(X × Y).
We have thus proved:

Proposition 9.4.4. If X and Y are finite type cell complexes, then there is a
chain homotopy equivalence between S•(X)⊗ S•(Y) and S•(X×Y).

We can apply our algebraic Künneth theorem, Proposition 9.1.12, The proof of Lemma 9.4.2 fails for a free
abelian group on an infinite set, so we
can’t directly apply Proposition 9.1.12 to
S•(X).

to the tensor product C•cell(X)⊗ C•cell(Y). We obtain short exact se-
quences

0→ (H∗(X)⊗H∗(Y))−n → H−n(C•cell(X)⊗C•cell(Y))→ Tor(H∗(X), H∗(Y))−n−1 → 0

which together with our chain homotopy equivalences give Theo-
rem 9.4.1.

Remark 9.4.5. Just as in homology, the same proof goes through over
any PID. In particular, if k is a field and X and Y are finite type cell
complexes, then we have natural isomorphisms

H∗(X; k)⊗k H∗(Y; k) ∼= H∗(X×Y; k),

since the Tor term always vanishes over a field.

Remark 9.4.6. The hypothesis that X and Y are finite type cell com-
plexes can be weakened: it is actually enough to assume that the
homology groups of X and Y are finitely generated in each degree:
If the homology of a chain complex C• consists of finitely generated
abelian groups and is bounded below then we can algebraically con-
struct a quasi-isomorphic chain complex C′• that is bounded below
and given degreewise by finitely generated free abelian groups. We
can apply Lemma 9.4.2 to such replacements of S•(X) and S•(Y) and
proceed as before.
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Remark 9.4.7. Another variant of the Künneth theorem for cohomol-
ogy (which uses a slightly different algebraic argument) gives the
same statement when X is a finite cell complex and Y is an arbitrary
topological space.

9.5 (⋆) Relative Eilenberg–Zilber and Künneth Theorems

In this section we will briefly discuss versions of the Eilenberg–Zilber
and Künneth theorems for relative homology. This requires a hypoth-
esis on the subspace pairs (which will hold in all examples):

Definition 9.5.1. Let X be a topological space and let A, B be two
subspaces of X. We say the pair A, B is reasonable if in the topological
space A ∪ B we can find open sets U, V such that A ⊆ U, B ⊆ V,
A ∪ B = U ∪V, and the inclusions A ↪→ U, B ↪→ V, A ∩ B ↪→ U ∩V
all induce isomorphisms in homology.

Theorem 9.5.2 (Relative Eilenberg–Zilber). Suppose (X, A) and (Y, B)
are subspace pairs such that X × B and A × Y are a reasonable pair of
subspaces of X × Y. Then there is a chain homotopy equivalence between
S•(X, A)⊗ S•(Y, B) and S•(X×Y, X× B ∪ A×Y).

Remark 9.5.3. Two important cases where the condition of the theo-
rem holds are when A and B are open subsets of X and Y, and when
one of A and B is empty. For example, we always have chain homo-
topy equivalences between S•(X)⊗ S•(Y, B) and S•(X×Y, X× B).

We start with the following easy observations, whose proofs we
leave to the reader:

Lemma 9.5.4. Suppose C•, D• are chain complexes, with subcomplexes
C′• ⊆ C• and D′• ⊆ D•. If we have two chain maps C• → D• that both
restrict to chain maps C′• → D′•, and a chain homotopy between them that
restricts to a chain homotopy on the subcomplexes, then there is an induced
chain homotopy between the induced chain maps C•/C′• → D•/D′•.

Lemma 9.5.5. Suppose A, B are subgroups of an abelian group M. Then
there is a commutative diagram

A ∩ B A A/A ∩ B

B M M/B

B/A ∩ B M/A M/A + B,

where all rows and columns are short exact sequences.

Notation 9.5.6. If A, B are both subspaces of a topological space X,
then we write S•(X, A + B) for the quotient S•(X)/(S•(A) + S•(B)).
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Remark 9.5.7. In this situation Lemma 9.5.5 gives a commutative
diagram

S•(A ∩ B) S•(A) S•(A, A ∩ B)

S•(B) S•(X) S•(X, B)

S•(B, A ∩ B) S•(X, A) S•(X, A + B),

where the rows and columns are short exact sequences.

Proposition 9.5.8. Given subspace pairs (X, A) and (Y, B), there is a
natural chain homotopy equivalence between S•(X, A) ⊗ S•(Y, B) and
S•(X×Y, X× B + A×Y).

Proof. We can apply Remark 9.5.7 to the subspaces X× B and A×Y
of X×Y to get a commutative diagram

S•(A× B) S•(A×Y) S•(A×Y, A× B)

S•(X× B) S•(X×Y) S•(X×Y, X× B)

S•(X× B, A× B) S•(X×Y, A×Y) S•(X×Y, A×Y + X× B)

where the rows and columns are short exact sequences. Since ten-
soring with a levelwise free chain complex preserves short exact
sequences, we also have such a commutative diagram of the form

S•(A)⊗ S•(B) S•(A)⊗ S•(Y) S•(A)⊗ S•(Y, B)

S•(X)⊗ S•(B) S•(X)⊗ S•(Y) S•(X)⊗ S•(Y, B)

S•(X, A)⊗ S•(B) S•(X, A)⊗ S•(Y) S•(X, A)⊗ S•(Y, B).

Now Lemma 9.5.4 and the naturality of the Eilenberg–Zilberg chain
homotopy equivalence implies that the corresponding terms in these
diagrams are chain homotopy equivalent. In particular, we have a
chain homotopy equivalence between S•(X, A)⊗S•(Y, B) and S•(X×
Y, X× B + A×Y).

Proposition 9.5.9. If A, B are a reasonable pair of subspaces of a topological
space X, then there is a chain homotopy equivalence between S•(X, A + B)
and S•(X, A ∪ B).

Lemma 9.5.10. Suppose A, B are a reasonable pair of subspaces of a topo-
logical space X. Then the inclusion

S•(A) + S•(B)→ S•(A ∪ B)

gives isomorphisms in homology.
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Proof. Let U ⊇ A, V ⊇ B the required pair of open sets in A ∪ B. We
will prove that both inclusions

S•(A) + S•(B)→ S•(U) + S•(V)→ S•(A ∪ B)

give isomorphisms in homology. We can identify S•(U) + S•(V)

with the subgroup of S•(A ∪ B) of “small chains” with respect to the
cover {U, V}, so the second map gives isomorphisms in homology by
Theorem 6.4.3. To prove the same holds for the first inclusion, first
consider the commutative diagram

S•(A ∩ B) S•(B) S•(B, A ∩ B)

S•(U ∩V) S•(V) S•(V, U ∩V),

where both rows are short exact sequences. Applying the 5-Lemma
to the corresponding map of long exact sequences in homology, our
hypotheses imply that S•(B, A ∩ B) → S•(V, U ∩ V) gives isomor-
phisms in homology. Now we can apply the same argument to the
commutative diagram

S•(A) S•(A) + S•(B) S•(B, A ∩ B)

S•(U) S•(U) + S•(V) S•(V, U ∩V),

to conclude that S•(A) + S•(B) → S•(U) + S•(V) gives isomor-
phisms in homology.

Proof of Proposition 9.5.9. We have a commutative diagram

0 S•(A) + S•(B) S•(X) S•(X, A + B) 0

0 S•(A ∪ B) S•(X) S•(X, A ∪ B) 0

where the rows are short exact sequences. Here the left-most vertical
map gives isomorphisms in homology by Lemma 9.5.10, so we can
apply the 5-Lemma to the resulting map of homology long exact
sequences to conclude that S•(X, A + B) → S•(X, A ∪ B) is a quasi-
isomorphism. We can identify the abelian groups Sn(X, A + B) and
Sn(X, A ∪ B) with the free abelian groups on Singn(X)/ Singn(A) ∪
Singn(B) and Singn(X)/ Singn(A ∪ B), respectively, so this is a chain
homotopy equivalence by Fact 9.4.3.

Combining Proposition 9.5.9 and Proposition 9.5.8 we obtain Theo-
rem 9.5.2. As a consequence, we get a relative version of the Künneth
theorem:

Corollary 9.5.11 (Relative Künneth Theorem). Suppose (X, A) and
(Y, B) are subspace pairs such that X× B and A×Y are a reasonable pair
of subspaces of X×Y. Then there are natural short exact sequences

0→ (H∗(X, A)⊗H∗(Y, B))n → Hn(X×Y, X× B∪A×Y)→ (Tor(H∗(X, A), H∗(Y, B)))n−1 → 0.
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This applies in particular if A and B are open subsets, and if A is
empty, in which case we get:

Corollary 9.5.12. Suppose X is a topological space and (Y, B) is a subspace
pair. Then there are natural short exact sequences

0→ (H∗(X)⊗H∗(Y, B))n → Hn(X×Y, X× B)→ (Tor(H∗(X), H∗(Y, B)))n−1 → 0.

Remark 9.5.13. The cohomological Eilenberg–Zilber theorem can also
be extended to the relative case, assuming the relative homology
groups are finitely generated in each degree.





10
The Ring Structure on Cohomology

In this chapter we introduce the cup product, which makes the coho-
mology H∗(X; R) of a space X with coefficients in a (commutative)
ring R into a graded (commutative) ring. In §10.1 we define the cup
product (and the closely related cross product) as a pairing. Then in
§10.2 we discuss (commutative) ring structures on graded abelian
groups and chain complexes, and show that to get a ring structure on
homology it’s enough to have a ring structure “up to homotopy” on
a chain complex. We use the method of acyclic models to obtain such
a homotopy ring strucutre on singular cochains S•(X; R) in §10.3.
Finally, we compute the cup product structure on H∗(RPn; F2) and
H∗(CPn; Z) in §10.4.

10.1 The Cross and Cup Products

We saw in Proposition 9.2.1 that there is a natural chain map

S•(X×Y)→ S•(X)⊗ S•(Y).

We can use this to define a natural multiplication on the singular
cochains S•(X; R) where R is a ring, and hence on the homology
H∗(X; R). For this we need the following algebraic construction:

Exercise 10.1.

(i) Prove that there is a natural homomorphism of abelian groups

Hom(A, M)⊗Hom(B, N)→ Hom(A⊗ B, M⊗ N),

where A, B, M, N are abelian groups, given by tensoring homomor-
phisms.

(ii) Use this to define a natural chain map

Hom(C, M)• ⊗Hom(D, N)• → Hom(C⊗ D, M⊗ N)•,

where C•, D• are chain complexes and M, N are abelian groups.

We then proceed by the following steps:

(1) As a special case of Exercise 10.1, for topological spaces X, Y and
abelian groups M, N there is a natural chain map

S•(X; M)⊗ S•(Y; N)→ Hom(S•(X)⊗ S•(Y), M⊗ N).
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(2) Composing with the Eilenberg–Zilber maps, we get natural chain
maps

S•(X; M)⊗ S•(Y; N)→ S•(X×Y; M⊗ N).

(3) If R is a ring, we can view the multiplication as a homomorphism
R⊗ R→ R; composing with this we get natural chain maps

S•(X; R)⊗ S•(Y; R)→ S•(X×Y; R⊗ R)→ S•(X×Y; R).

(4) For any space X, the diagonal ∆ : X → X× X induces a natural
chain map ∆∗ : S•(X × X; R) → S•(X; R). Composing with this,
we have a natural chain map

S•(X; R)⊗ S•(X; R)→ S•(X× X; R) ∆∗−→ S•(X; R).

(5) Using the maps from Lemma 9.1.10, on homology we get natural
maps

H∗(X; R)⊗H∗(Y; R)→ H∗(S•(X; R)⊗S•(Y; R))→ H∗(X×Y; R),

H∗(X; R)⊗H∗(X; R)→ H∗(S•(X; R)⊗S•(X; R))→ H∗(X×X; R) ∆∗−→ H∗(X; R).

This amounts to natural bilinear multiplication maps in cohomology

Hn(X; R)× Hm(Y; R)→ Hn+m(X×Y; R),

Hn(X; R)× Hm(X; R)→ Hn+m(X; R).

The former is called the cross product and denoted

(ξ, η) 7→ ξ × η

for ξ ∈ Hn(X; R), η ∈ Hm(Y; R), while the latter is called the cup
product and denoted

(α, β) 7→ α ⌣ β

for α ∈ Hn(X; R), β ∈ Hm(X; R). Note that by definition we have

α ⌣ β = ∆∗(α× β).

Remark 10.1.1. Note that if R = Z then the cross product map is
exactly the map we used in the Künneth theorem for cohomology.

The cross and cup products in cohomology are well-defined, since
by Proposition 9.2.1 any two Eilenberg–Zilber maps are chain homo-
topic, and so induce the same map in homology. To compute cup
products it can be convenient to have an explicit formula, however. If
we use the Alexander–Whitney map from Definition 9.3.2, we get the
following formulae:

Proposition 10.1.2.

(i) If [ξ] ∈ Hn(X; R), [η] ∈ Hm(Y; R) are cohomology classes repre-
sented by cocycles ξ ∈ Sn(X; R) ∼= RSingn(X), η ∈ Sm(Y; R) ∼=
RSingm(Y), then [ξ]× [η] is represented by the cochain in RSingn+m(X×Y)

given by
(σ, τ) 7→ ξ(σ ◦ αn+m

n ) · η(τ ◦ωn+m
m ),

where the multiplication is in the ring R.
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(ii) If [ξ] ∈ Hn(X; R), [ξ ′] ∈ Hm(X; R) are cohomology classes rep-
resented by cocycles ξ ∈ Sn(X; R) ∼= RSingn(X), ξ ′ ∈ Sm(X; R) ∼=
RSingm(X), then [ξ] ⌣ [ξ ′] is represented by the cochain in RSingn+m(X)

given by
σ 7→ ξ(σ ◦ αn+m

n ) · ξ ′(σ ◦ωn+m
m ).

Remark 10.1.3. For S ⊆ {0, . . . , n} let us write ∆S ⊆ ∆n for the face
(isomorphic to ∆|S|) of ∆n whose vertices are the vertices in S. For
σ : ∆n → X we can then denote the restriction of σ to this face by
σ|∆S . With this notation the formula for the cup product using the
Alexander–Whitney map can be written as

(ξ ⌣ ξ ′)(σ) = ξ(σ|∆{0,...,n}) · ξ ′(σ|∆{n,n+1,...,n+m}).

Example 10.1.4. For Sn, the cup product in positive degrees is trivial
for degree reasons: if x is the generator of Hn(Sn) then x ⌣ x = 0
since H2n(Sn) = 0. However, we will see in Exercise 10.2 that H∗(Sn×
Sm) has a non-trivial cup product: if x and y are the generators in
degrees n and m, then x ⌣ y is the generator in degree n + m.

Exercise 10.2.

(i) Show that the cross product H∗(X) ⊗ H∗(Y) → H∗(X × Y) can be
expressed in terms of the cup product by the formula

ξ × η = p∗Xξ ⌣ p∗Yη

where pX , pY are the projections from X×Y to X and Y. [Hint: Use the
explicit formula for the cup and cross products.]

(ii) If R, R′ are commutative rings, we can equip the tensor product R⊗ R′

with a commutative ring structure with the multiplication defined on
generators by

(r1 ⊗ r′1) · (r2 ⊗ r′2) = r1r′1 ⊗ r2r′2.

Check that the analogous construction for graded rings also makes
sense. [Note that to get commutativity in the graded cases we need to
add a sign.]

(iii) Show that the cross product map H∗(X) ⊗ H∗(Y) → H∗(X × Y) is
a ring homomorphism with respect to the tensor product of the cup
product on X and Y and the cup product on X×Y. [Hint: This amounts
to checking the relation

(ξ ⌣X ξ ′)× (η ⌣Y η′) = (ξ × η) ⌣X×Y (ξ ′ × η′),

for which you can use part (i) and naturality of cup products.]

(iv) Prove that if X and Y are finite type cell complexes and the integral
cohomology groups of X are all free abelian groups, then the cross
product map

H∗(X)⊗ H∗(Y)→ H∗(X×Y)

is an isomorphism of rings. [Hint: Use the Künneth Theorem for
cohomology.]

(v) Compute the ring structure on H∗(Sn × Sm).

Remark 10.1.5. We can also define relative versions of cross and cup
products, though as with the relative Künneth theorem we need some
mild assumptions:
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• if (X, A) and (Y, B) are subspace pairs, such that X× B and A×Y
are a reasonable pair of subspaces of X×Y, then there is a relative
cross product

H∗(X, A; R)⊗ H∗(Y, B; R)→ H∗(X×Y, X× B ∪ A×Y; R).

(Since we do always have a chain homotopy equivalence between
S•(X, A)⊗ S•(Y, B) and S•(X×Y, X× B + A×Y), we can define
a “cross product” with target the homology of the latter chain
complex, but this may not agree with the relative homology in
general.)

• if (X, A) is any subspace pair, we have a relative cup product

H∗(X, A; R)⊗ H∗(X, A; R)→ H∗(X, A; R).

(This is because the diagonal of X always gives a map S•(X, A)→
S•(X× X, X× A + A× X).)

• more generally, if A, B are a reasonable pair of subspaces of X,
then we have a relative cup product

H∗(X, A; R)⊗ H∗(X, B; R)→ H∗(X, A ∪ B; R).

(This uses that the diagonal of X gives a map S•(X, A + B) →
S•(X× X, A× X + X× B).)

10.2 Graded Rings

We are going to show that when R is a commutative ring, then the cup
product makes the cohomology H∗(X; R) into a commutative ring in
an appropriate sense. To explain what we mean by this, let’s start by
looking at a diagrammatic reformulation of the usual definition of a
(commutative) ring using the tensor product of abelian groups:

Definition 10.2.1. An (associative, unital) ring consists of an abelian
group R together with homomorphisms m : R⊗ R→ R (multiplica-
tion, corresponding to a bilinear map R× R → R) and u : Z → R
(corresponding to a unit element u(1) in R), such that the following
diagrams commute:

R⊗ R⊗ R R⊗ R

R⊗ R R,

m⊗id

id⊗m m

m

Z⊗ R R R⊗Z

R⊗ R R R⊗ R,

u⊗id

∼=

id⊗u

∼=

m
m

where the first expresses the associativity of the multiplication and
the second that the multiplication on the left or right by the unit gives
the identity. The ring is commutative if in addition the triangle

R⊗ R

R

R⊗ R

τ

m

m
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commutes, where τ is the natural symmetry isomorphism that swaps
the factors in the tensor product.

Exercise 10.3. Convince yourself that the diagrammatic definition of a (com-
mutative) ring agrees with the (equational) one you have seen before.

Remark 10.2.2. Here and elsewhere in this discussion we have ignored
the fact that R⊗ (R⊗ R) and (R⊗ R)⊗ R are not equal, just canoni-
cally isomorphic — the commutative square describing associativity
should really be a pentagon where this associativity isomorphism for
⊗ also appears.

We can make the same definition in any category with a tensor
product and a symmetry isomorphism, such as graded abelian groups
and chain complexes:

Definition 10.2.3. An (associative, unital) graded ring is a graded
abelian group R∗ together with maps m : R∗⊗R∗ → R∗ and u : Z[0]→
R∗ such that the analogues of the associtiavity and unit diagrams
above commute. The graded ring R∗ is commutative if in addition
the commutativity diagram commutes.

More explicitly, this structure amounts to giving bilinear multi-
plication maps Rn × Rm → Rn+m and a unit e ∈ R0 such that we
have a(bc) = (ab)c and ea = a = ae. Note that because our pre-
ferred symmetry isomorphism for graded abelian groups has a sign,
commutativity means that for elements a ∈ Rn, b ∈ Rm we have

ab = (−1)nmba.

We can also make the analogous definition in chain complexes:

Definition 10.2.4. An (associative, unital) differential graded ring (or
dg-ring) is a chain complex group R• together with chain maps
m : R• ⊗ R• → R• and u : Z[0] → R• such that the analogues of
the associtiavity and unit diagrams above commute. The dg-ring R•
is commutative if in addition the commutativity diagram commutes.

This structure amounts to giving a (commutative) graded ring
structure on the underlying graded abelian group R∗ as above, such
that the unit e is a cycle (∂e = 0) and the product satisfies the “Leibniz
formula”:

∂(ab) = (∂a)b + (−1)na(∂b)

for a ∈ Rn, b ∈ Rm.
A dg-ring structure on a chain complex C• induces a graded

ring structure on H∗(C) (with multiplication given by the composite
H∗(C)⊗ H∗(C)→ H∗(C⊗ C)→ H∗(C)), so we might hope that the
ring structure on singular cohomology H∗(X; R) arises from a dg-ring
structure on S•(X; R). However, this is not quite true, and we have to
consider a slightly weaker structure:

Definition 10.2.5. A homotopy dg-ring is a chain complex group R•
together with chain maps m : R• ⊗ R• → R• and u : Z[0] → R•
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such that the analogues of the associtiavity and unit diagrams above
commute up to chain homotopy, i.e. there exists some choice of chain
homotopy between the composite chain maps. The homotopy dg-
ring R• is commutative if in addition the commutativity diagram
commutes up to chain homotopy.

Lemma 10.2.6. If R• is a (commutative) homotopy dg-ring, then H∗(R)
inherits a (commutative) graded ring structure.

Proof. Recall that for chain complexes C•, D• we have a natural map
H∗(C)⊗ H∗(D)→ H∗(C⊗ D), and this is compatible with the asso-
ciativity, unitality, and symmetry of ⊗. We define the multiplication
on H∗R as the composite

H∗(R)⊗ H∗(R)→ H∗(R⊗ R)→ H∗(R),

where the second map is induced by the multiplication on R•, with
unit

Z[0] ∼−→ H∗(Z[0])→ H∗(R)

using the unit of R•. To prove associativity we consider the diagram

H∗(R)⊗ H∗(R)⊗ H∗(R) H∗(R)⊗ H∗(R⊗ R) H∗(R)⊗ H∗(R)

H∗(R⊗ R)⊗ H∗(R) H∗(R⊗ R⊗ R) H∗(R⊗ R)

H∗(R)⊗ H∗(R) H∗(R⊗ R) H∗(R),

where the bottom right square commutes because chain homotopic
maps give the same map in homology, and the other three squares
commute by naturality. To prove the multiplication on H∗R is unital,
we consider the diagram

H∗R⊗Z[0] H∗(R⊗Z[0]) H∗(R)

H∗(R)⊗ H∗(R) H∗(R⊗ R) H∗(R),

∼= ∼=

which commutes for the same reasons, as well as the corresponding
diagram with Z[0] on the other side.

Finally, if R• is homotopy commutative, we have the commutative
diagram

H∗(R)⊗ H∗(R) H∗(R⊗ R)

H∗(R)

H∗(R)⊗ H∗(R) H∗(R⊗ R),

τ H∗τ

which proves that H∗(R) is commutative.
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10.3 Homotopy Ring Structures on Cochains

In this section we will sketch an argument that any choice of Eilenberg–
Zilber maps S•(X × Y) → S•(X) ⊗ S•(Y) can be used to make
S•(X; R) a (commutative) homotopy dg-ring when R is a (commuta-
tive) ring.

The following can be proved by using the method of acyclic models:

Proposition 10.3.1. Let ϕX,Y : S•(X×Y)→ S•(X)⊗ S•(Y) be a natural
family of Eilenberg–Zilber chain maps.

(i) For any three spaces X, Y, Z the square Here and elsewhere in this section
we are again suppressing the natu-
ral associativity isomorphism (S•(X)⊗
S•(Y)) ⊗ S•(Z) ∼= S•(X) ⊗ (S•(Y) ⊗
S•(Z)).

S•(X×Y× Z) S•(X×Y)⊗ S•(Z)

S•(X)⊗ S•(Y× Z) S•(X)⊗ S•(Y)⊗ S•(Z)

ϕX×Y,Z

ϕX,Y×Z ϕX,Y⊗id
id⊗ϕY,Z

commutes up to a natural chain homotopy.

(ii) Let u : S•(∗) → Z[0] be the unique chain map that’s the identity in
degree 0. Then for any space X the diagram

S•(X× ∗) S•(X)⊗ S•(∗) S•(X)⊗Z[0]

S•X

∼=

ϕX,∗ id⊗u

∼=

commutes up to a natural chain homotopy, as does the analogous
diagram with Z[0] on the other side.

(iii) For any pair of spaces X, Y the square

S•(X×Y) S•(X)⊗ S•(Y)

S•(Y× X) S•(Y)⊗ S•(X)

ϕX,Y

t∗ τ

ϕY,X

commutes up to a natural chain homotopy, where t denotes the natural
isomorphism X×Y ∼−→ Y× X.

Applying Hom(–, R) and combining these diagrams with the nat-
ural maps S•(X; R)⊗ S•(Y; R)→ Hom(S•(X)⊗ S•(Y), R), we get:

Corollary 10.3.2. Let R be a ring.

(i) For any three spaces X, Y, Z the square

S•(X; R)⊗ S•(Y; R)⊗ S•(Z; R) S•(X×Y; R)⊗ S•(Z; R)

S•(X; R)⊗ S•(Y× Z; R) S•(X×Y× Z; R)

commutes up to a natural chain homotopy.
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(ii) For any space X the diagram

S•(X; R)

S•(X; R)⊗Z[0] S•(X; R)⊗ S•(∗; R) S•(X× ∗; R)

∼= ∼=

commutes up to a natural chain homotopy, as does the analogous
diagram with Z[0] on the other side.

(iii) If R is commutative, then for any pair of spaces X, Y the square

S•(X; R)⊗ S•(Y; R) S•(X×Y; R)

S•(Y; R)⊗ S•(X; R) S•(Y× X; R)

τ t∗

commutes up to a natural chain homotopy.

Corollary 10.3.3. For any ring R and space X, we have a natural homotopy
dg-ring structure on S•(X; R) with multiplication given by

S•(X; R)⊗ S•(X; R)→ S•(X× X; R) ∆∗−→ S•(X; R),

and unit given by

Z[0] u∗−→ S•(∗; R)→ S•(X; R).

If the ring R is commutative then this homotopy ring structure is also
(homotopy) commutative.

Proof. To prove associativity, consider the diagram

S•(X; R)⊗ S•(X; R)⊗ S•(X; R) S•(X× X; R)⊗ S•(X; R) S•(X; R)⊗ S•(X; R)

S•(X; R)⊗ S•(X× X; R) S•(X× X× X; R) S•(X× X; R)

S•(X; R)⊗ S•(X; R) S•(X× X; R) S•(X; R),

∆∗⊗id

id⊗∆∗ (id×∆)∗

(∆×id)∗

∆∗

∆∗

where the top left square commutes up to a natural chain homotopy
by Corollary 10.3.2(i), the top right and bottom left squares commute
by naturality, and the bottom right square commutes because the
square

X X× X

X× X X× X× X

∆

∆ id×∆

∆×id

of topological spaces commutes. Next, to prove unitality we consider
the diagram

S•(X; R)⊗Z[0]

S•(X; R)⊗ S•(∗; R) S•(X× ∗; R)

S•(X; R)⊗ S•(X; R) S•(X× X; R) S•(X),

∼=

∼=

∆∗
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where the top triangle commutes up to a natural chain homotopy by
Corollary 10.3.2(ii), the bottom left square commutes by naturality,
and the bottom right triangle commutes because the triangle

X X× X

X× ∗

∆

∼=

of topological spaces commutes. (And of course the case with Z[0]
on the other side works the same.)

To prove commutativity we consider the diagram

S•(X; R)⊗ S•(X; R) S•(X× X; R)

S•(X; R)

S•(X; R)⊗ S•(X; R) S•(X× X; R),

τ t∗

∆∗

∆∗

where the left-hand square commutes up to a natural chain homotopy
by Corollary 10.3.2(iii) and the right-hand triangle commutes because
the triangle

X× X

X

X× X

t

∆

∆

of topological spaces commutes.

If we make a good choice of Eilenberg–Zilber maps, such as the
Alexander–Whitney maps, then S•(X; R) is a dg-ring in the strict
sense (as can be seen easily from the formulae in Proposition 10.1.2):

Exercise 10.4. Show that if we define the cup product on the chain level
using the Alexander–Whitney map, then S•(X; R) is a (strictly) associative
and unital dg-ring for any ring R.

Remark 10.3.4. However, using this specific choice of Eilenberg–Zilber
map the dg-ring S•(X; R) is still not commutative in the strict sense,
but only up to chain homotopy. In fact, it is impossible to make the
cup product commutative on the chain level in the strict sense. The “failure” of strict commutativity ac-

tually turns out to encode further in-
teresting structure on H∗(X; R), namely
cohomology operations, but this is beyond
the scope of this course.

Combining Corollary 10.3.3 with Lemma 10.2.6, we get the follow-
ing:

Corollary 10.3.5. If R is a ring, then H∗(X; R) has a natural (graded) ring
structure, and if R is commutative then H∗(X; R) is a graded commutative
ring.

The graded ring structure on H∗(X; R) restricts to an (ordinary)
ring structure on H0(X; R) (commutative if R is commutative); the
following exercise identifies this:
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Exercise 10.5.

1. Show that under the isomorphism H0(X; R) ∼= Rπ0X , the cup product in
degree 0 corresponds to the pointwise multiplication of functions π0X →
R, with unit the constant function with value 1 ∈ R and product ( f ·
g)(x) = f (x) · g(x). [Hint: Use the explicit formula from the Alexander–
Whitney map.]

2. By additivity for cohomology we have an isomorphism Hi(X; R) ∼=
∏t∈π0(X) Hi(Xt; R) where Xt denotes the path-component of X corre-
sponding to t ∈ π0X. Show that under this isomorphism the cup product

H0(X; R)× Hi(X; R)→ Hi(X; R)

for i > 0 takes f : π0X → R and (αt)t∈π0X to ( f (t)αt)t (in terms of the
natural R-module structure on Hi(Xt; R)).

Exercise 10.6.

(i) If Ri, i ∈ I, are rings, then the cartesian product ∏i∈I Ri can be
given a commutative ring structure with pointwise multiplication (i.e.
(ri)i∈I · (r′i)i∈I = (rir′i)i∈I). Check that this has the universal property
of the product in the category of rings (i.e. given ring homomorphisms
ϕi : R′ → Ri for each i, there exists a unique ring homomorphism
R′ → ∏i∈I Ri that projects to ϕi in the ith coordinate). Also check
the analogous statement holds for graded rings (where the cartesian
product is taken degreewise).

(ii) Show that for topological spaces Xi, i ∈ I, the map

H∗(⨿
i∈I

Xi)→∏
i∈I

H∗(Xi),

induced by the inclusions Xi ↪→ ⨿i∈I Xi, is an isomorphism of rings.

(iii) Compute the ring structure on H∗(Sn ∨ Sm). [Hint: The canonical map
Sn ⨿ Sm → Sn ∨ Sm induces a ring homomorphism H∗(Sn ∨ Sm) →
H∗(Sn ⨿ Sm); check that this is an isomorphism in degrees ∗ > 0.]

Exercise 10.7 (∗). Let Σg be the orientable closed surface of genus g. There
is a continuous map from Σg to a wedge of g tori that pinches the “necks”
between the g holes to points,

q : Σg →
∨
g
(S1 × S1)

Using that the induced map in cohomology is a ring homomorphism, com-
pute the ring structure on H∗(Σg). [Recall that in Exercise 4.8 you computed
that

H∗(Σg) ∼=


Z, ∗ = 0, 2

Z2g, ∗ = 1,

0, otherwise,

and use Exercise 10.6 and Exercise 10.2 to compute the ring structure for the
wedge of tori.]

10.4 (⋆) The Cohomology Rings of RPn and CPn

We now want to describe the cup product structure on the cohomology
of projective spaces. To state the result in a nice way, we first introduce
some terminology:
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Definition 10.4.1. Let R be a commutative ring. The graded polynomial
ring R[x1, . . . , xk] where the generator xi has degree di, has as its
nth graded piece R[x1, . . . , xk]n the free R-module on the monomials
xi1

1 · · · x
ik
k where i1d1 + · · · + ikdk = n. Multiplication is defined as

you would expect, using the graded commutativity relation xixj =

(−1)didj xjxi.

Remark 10.4.2. If R∗ is a graded ring, we can use the graded multi-
plication to define an “underlying” (ungraded) ring structure on the
direct sum

⊕
n Rn. For the graded polynomial ring R[x1, . . . , xk] as

above, the underlying (ungraded) ring is the associative ring

R⟨x1, . . . , xn⟩/(xixj = (−1)didj xjxi)

generated by elements x1, . . . , xk subject to the graded commutativity
relation (where the angle brackets denote the free associative ring on
a set of generators)

Remark 10.4.3. If di is even for all i, then the xi’s commute and the
underlying ring of R[x1, . . . , xk] is the ordinary polynomial ring on k
generators. On the other hand, if di is odd for all i, we get the exterior
algebra on k,

ΛR(x1, . . . , xk) = R⟨x1, . . . , xk⟩/(xixj = −xjxi).

However, if 2 = 0 in R (e.g. if R = F2) then the xi’s commute regard-
less of their degrees and the underlying ring is always a polynomial
ring.

Theorem 10.4.4. There are isomorphisms of graded rings

H∗(RPn; F2) ∼= F2[x]/(xn+1), H∗(RP∞; F2) ∼= F2[x]

where x is a generator in degree 1,

H∗(CPn; Z) ∼= Z[x]/(xn+1), H∗(CP∞; Z) ∼= Z[x]

where x is a generator in degree 2.

Remark 10.4.5. Recall that we have a cell structure on RPn with a
single cell in each dimension ≤ n, such that the i-skeleton RPn

i is
the subspace RPi ∼= RP{0,...,i}; with F2-coefficients we saw that the
corresponding cellular (co)chain complex has zero differentials, so
that

H∗(RPn; F2) ∼=

Z/2, 0 ≤ ∗ ≤ n,

0, otherwise.

In the case of CPn we have a cell structure with a single cell in each
even dimension ≤ 2n, so that the integral cellular (co)chain complex
has zero differentials, and

H∗(CPn) ∼=

Z, ∗ even, 0 ≤ ∗ ≤ 2n,

0, otherwise.
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Remark 10.4.6. In the case of RPn we can equivalently state this
result as: if x ∈ Hi(RPn; F2) and y ∈ H j(RPn; F2) are non-zero and
i + j ≤ n, then x ⌣ y ∈ Hi+j(RPn; F2) is non-zero (recall that all of
these groups are isomorphic to Z/2). Similarly, for CPn this amounts
to saying that if x ∈ Hi(CPn) and y ∈ H j(CPn) are generators and
i + j ≤ n, then x ⌣ y is a generator of Hi+j(CPn) (recall that all of
these groups are isomorphic to Z).

Notation 10.4.7. Let n denote the n-element set {1, . . . , n}. For S ⊆ n,
write RS for the closed subset of Rn consisting of vectors (x1, . . . , xn)

such that xi = 0 for i /∈ S and Rn
S for the closed subset of vectors

(x1, . . . , xn) where xi = 0 for i ∈ S (so RS = Rn
n\S, RS ∼= R|S| and

Rn
S
∼= Rn−|S|). Note that Rn

S ∩Rn
T = Rn

S∪T . We also let VS denote the
open subset Rn \Rn

S; thus VS is the set of vectors (x1, . . . , xn) such
that xi ̸= 0 for at least one i ∈ S. We have VS ∪VT = VS∪T .

Proposition 10.4.8. For S ⊆ n a subset of size i, the relative cup product

Hi(Rn, VS)⊗ Hn−i(Rn, Vn\S)
⌣−→ Hn(Rn, Rn \ {0})

is an isomorphism (where VS ∪Vn\S = Vn = Rn \ {0}).

Remark 10.4.9. The same proof works with coefficients in any PID
R, if we replace the tensor product with a relative tensor product of
R-modules.

Proof. The inclusion (RS, RS \ {0}) ↪→ (Rn, VS) is a deformation
retract for any S, as is the inclusion (Dm, Dm \ {0}) ↪→ (Rm, Rm \ {0})
for any m. But ∂Dm ↪→ Dm \ {0} is also a deformation retract, so
there is a homotopy equivalence between (Rn, VS) and (D|S|, ∂D|S|)
and so H∗(Rn, VS) ∼= H̃∗(S|S|); in particular Hi(Rn, VS) ∼= Z and the
other cohomology groups are zero. Since these are finitely generated
free abelian groups, we can apply the Künneth theorem for relative
cohomology to conclude that the cross product map

Hi(Rn, VS)⊗ Hn−i(Rn, Vn\S)→ Hn(R2n, VS ×Rn ∪Rn ×Vn\S)

is an isomorphism. The cup product we’re interested in is obtained by
composing this with the map in cohomology induced by the diagonal
map

∆ : (Rn, Rn \ {0})→ (R2n, VS ×Rn ∪Rn ×Vn\S),

so to complete the proof it suffices to show that this map gives an
isomorphism in cohomology. We will prove this by checking that this
map is a deformation retract. The retraction ρ : R2n → Rn is defined
by

ρ(x, y)i =

xi, i ∈ S,

yi, i /∈ S;

note that the subset VS ×Rn ∪Rn ×Vn\S consists of those pairs (x, y)
such that either some xi ̸= 0 with i ∈ S or some yi ̸= 0 with i /∈ S, so
that ρ(x, y) ̸= 0 for (x, y) in this subset. We clearly have ρ∆ = idRn ,
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and we can simply define a linear homotopy between idR2n and ∆ρ

by
h(x, y, t) = t(x, y) + (1− t)∆ρ(x, y);

if we write h(x, y, t) = (x(t), y(t)) then x(t)i = xi for i ∈ S and
y(t)i = yi for i /∈ S so this takes the subspace VS ×Rn ∪Rn ×Vn\S to
itself, as required.

Next we want an analogue of this result for projective space, which
requires some more notation. We will only state this for RPn for
simplicity, but the same argument works for CPn.

Notation 10.4.10. Let n+ denote the set {0, . . . , n}. Recall that we can The point (x0 : x1 : · · · : xn) represents
the line in Rn+1 through the origin and
the point (x0, . . . , xn).

describe points of RPn by projective coordinates as (x0 : x1 : · · · : xn)

with xi ∈ R not all 0, where (x0 : x1 : · · · : xn) = (λx0 : λx1 :
· · · : λxn) for λ ̸= 0 in R. For S ⊆ n+, let RPS denote the closed
subset of RPn containing those points (x0 : x1 : · · · : xn) where
xi = 0 for i /∈ S, and let RPn

S := RPn+\S denote the set of points
(x0 : x1 : · · · : xn) where xi = 0 for i ∈ S. Then RPS ∼= RP|S|−1 and
we have RPn

S ∩RPn
T = RPn

S∪T . We write US := RPn \RPn
S for the

open subset consisting of points (x0 : x1 : · · · : xn) such that xi ̸= 0
for some i ∈ S; then US ∪UT = US∪T .

Remark 10.4.11. For the one-element set {i}, every point of U{i} has
unique projective coordinates of the form (x0 : · · · : xi−1 : 1 : xi+1 :
· · · : xn) with ith coordinate 1. This gives a homeomorphism between
U{i} and Rn. On the other hand, RPn

n+\{i} consists of the single point
(0 : . . . : 0 : 1 : 0 . . . : 0) with only the ith coordinate non-zero.

Corollary 10.4.12. The relative cup product

Hi(RPn, U{0,...,i−1}; R)⊗R Hn−i(RPn, U{i+1,...,n}; R) ⌣−→ Hn(RPn, Un+\{i}; R)

is an isomorphism for any PID R.

Proof. By naturality we have a commutative square

Hi(RPn, U{0,...,i−1}; R)⊗R Hn−i(RPn, U{i+1,...,n}; R) Hn(RPn, Un+\{i}; R)

Hi(U{i}, U{i} ∩U{0,...,i−1}; R)⊗R Hn−i(U{i}, U{i} ∩U{i+1,...,n}; R) Hn(U{i}, U{i} ∩Un+\{i}; R),

⌣

⌣

where the vertical morphisms are isomorphisms by excision (of
RPn
{i} = RPn \U{i}). Now observe that under the homeomorphism

U{i} ∼= Rn the bottom horizontal map corresponds to one of those we
proved was an isomorphism in Proposition 10.4.8.

We need one more observation before we can complete the proof:

Lemma 10.4.13. If S ⊆ n+ is a subset of size i, then the homomorphism

Hi(RPn, US; F2)→ Hi(RPn; F2)

is an isomorphism.
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Proof. By definition, US is the subset of RPn consisting of points
(x0 : · · · : xn) where xi ̸= 0 for at least one i ∈ S. The subset RPS

consists of points where xi = 0 for all i /∈ S; since at least one xi must
be non-zero, we have RPS ⊆ US, so that the map we are interested in
factors as

Hi(RPn, US; F2)→ Hi(RPn, RPS; F2)→ Hi(RPn; F2).

We claim that the inclusion RPS ↪→ US is a deformation retract, so
that the first morphism in this factorization is an isomorphism. To
see this we simply define a retraction ρ : US → RPS and a homotopy
h between ρ and the identity by

ρ(x)i =

xi, i ∈ S,

0, i /∈ S
h(x, t)i =

xi, i ∈ S,

txi, i /∈ S.

It therefore suffices to prove that Hi(RPn, RPS; F2) → Hi(RPn; F2)

is an isomorphism. Without loss of generality we may assume that
S = {0, . . . , i− 1} so that RPS ∼= RPi−1 is the (i− 1)-skeleton in the
cell structure on RPn. We then have a map of pairs (RPi, RPi−1)→
(RPn, RPi−1), which gives a commutative square

Hi(RPn, RPi−1; F2) Hi(RPn; F2)

Hi(RPi, RPi−1; F2) Hi(RPi; F2).

Since RPi is the i-skeleton of RPn and the cellular cochain com-
plex has zero differential, we see that the right vertical and bot-
tom horizontal maps are isomorphisms. We can then show that
the left vertical map is an isomorphism by applying the 5-Lemma
to the map of long exact sequences induced by the map of pairs
(RPi, RPi−1) → (RPn, RPi−1). It follows that the top horizontal
map is also an isomorphism, as required.

Proof of Theorem 10.4.4. We will prove the case of RPn; the proof for
CPn is the same. The inclusion RPi ↪→ RPn of the i-skeleton gives
a ring homomorphism H∗(RPn; F2) → H∗(RPi; F2) and this is an
isomorphism for ∗ ≤ i (using cellular cohomology). Thus the cup
products that land in degrees < n are determined by the cup products
in RPn−1; we can therefore proceed by induction, and are left with
proving that the top-degree cup product maps

Hi(RPn; F2)⊗F2 Hn−i(RPn; F2)→ Hn(RPn; F2)

are isomorphisms. But by naturality we have a commutative square

Hi(RPn, U{0,...,i−1}; F2)⊗F2 Hn−i(RPn, U{i+1,...,n}; F2) Hn(RPn, Un+\{i}; F2)

Hi(RPn; F2)⊗F2 Hn−i(RPn; F2) Hn(RPn; F2)

⌣

⌣
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where the top horizontal map is an isomorphism by Corollary 10.4.12 Since Z/2 ⊗ Z/2 ∼= Z/2 the relative
tensor products over F2 here are iso-
morphic to tensor products of abelian
groups.

and the vertical maps are isomorphisms by Lemma 10.4.13.
For RP∞ we observe that the inclusion RPn ↪→ RP∞ gives a

ring homomorphism H∗(RP∞; F2) → H∗(RPn; F2) that is an iso-
morphism in degrees ∗ ≤ n, so the cup products in RP∞ in degrees
≤ n are determined by those in RPn, which gives the extension to
RP∞.

Example 10.4.14. The topological spaces S2 ∨ S4 and CP2 have isomor-
phic (co)homology groups: in both cases we have Z in dimensions
0, 2, 4 and 0 elsewhere. However, their cup product structures are
different: if x denotes a generator of H2, then Theorem 10.4.4 implies
that for CP2 the cup square x2 is a generator of H4; on the other
hand, in Exercise 10.6 you will show that x2 = 0 in S2 ∨ S4. Thus the
cohomology ring of a space is a more powerful invariant than the
cohomology groups alone.

Exercise 10.8 (∗). Show that H∗(CPn ×CPm) is a truncated graded polyno-
mial ring in two variables,

H∗(CPn ×CPm) ∼= Z[x, y]/(xn+1, ym+1),

where both generators are in degree 2. [Hint: First check that there is an
isomorphism of (ungraded) polynomial rings Z[x] ⊗Z[y] ∼= Z[x, y]. Use
Exercise 10.2.]





11
Manifolds and Poincaré Duality

In §11.1 we introduce manifolds, which are spaces that locally look
like Rn, and prove some first results about their homology. Then
we define orientations of manifolds in §11.2 and show that every
oriented compact n-manifolds M has a fundamental class [M] ∈ Hn(M).
Poincaré duality for compact oriented manifolds is an isomorphism

Hk(M)
∼−→ Hn−k(M)

where the map is given by applying a general construction, the cap
product, to the fundamental class; we introduce cap products in §11.3.
The cap product is closely related to the cup product in cohomology,
and in §11.4 we apply Poincaré duality to better understand cup
products on manifolds; in particular, we give a simple proof of the
cup product structure for real and complex projective spaces. In order
to prove Poincaré duality we want to work locally on a manifold,
which means we have to drop the compactness assumption; since
Poincaré duality is trivially false for non-compact manifolds (such
as Rn) we must introduce a new variant of cohomology, namely
cohomology with compact support, in §11.5. Using this we can then
prove Poincaré duality in §11.6.

11.1 Manifolds

Definition 11.1.1. A (topological) manifold of dimension n (or just n-
manifold) is a second-countable Hausdorff space M such that every
point of M has a neighbourhood that is homeomorphic to Rn.

Remark 11.1.2. A topological space X is second-countable if there
exists a countable set of open sets Ui ⊆ X (i = 1, 2, . . .) such that every
open set in X can be written as a union of Ui’s. (For example, Rn

is second-countable because we can cover any subset by open balls
whose centers have rational coordinates and whose radii are rational.)
This condition will not really play a role here, though it is commonly
part of the definition of manifolds and will allow us to prove some
things by induction that would otherwise require using transfinite
induction.

Remark 11.1.3. Manifolds in this sense that are compact are often
called closed manifolds, to distinguish them from compact manifolds
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with boundary (an important variant of the definition, though we
probably won’t discuss it).

Examples 11.1.4. Many of the spaces we have looked at in the course
so far are manifolds:

• the spheres Sn

• the torus S1 × S1

• the Klein bottle

• the orientable surface of genus g

• the projective spaces RPn and CPn (but not the infinite versions
RP∞ and CP∞)

Moreover, if M is an m-manifold and N is an n-manifold, then M× N
is an (m + n)-manifold.

Example 11.1.5 (3-manifolds from knots). Suppose K ⊆ S3 is a knot
(a smooth embedding of S1). Then we can choose N to be a little tube
around K, which is an embedding of the solid torus D1 × S1. If we
remove this, then S3 \N has a boundary S1×S1 and we can glue in the
solid torus S1 × D1 to get a new 3-manifold. The Lickorish–Wallace
theorem from the 1960s states that all closed orientable connected
smooth 3-manifolds can be obtained by variations of this procedure,
which is called Dehn surgery.

Lemma 11.1.6. If M is an n-manifold then for every point x ∈ M we have

H∗(M, M \ {x}) ∼=

Z, ∗ = n,

0, ∗ ̸= n.

Proof. Let U be a neighbourhood of x such that there is a homeomor-
phism ϕ : U ∼−→ Rn. Then we have isomorphisms

H∗(M, M \ {x}) ∼= H∗(U, U \ {x}) ∼= H∗(Rn, Rn \ {ϕ(x)})

by excising M \U and applying ϕ. But there is a homotopy equiva-
lence between (Rn, Rn \ {ϕ(x)}) and (Dn, Sn−1) so that

H∗(Rn, Rn \ {ϕ(x)}) ∼= H∗(Dn, Sn−1) ∼= H̃∗(Sn),

which gives the required result.

Remark 11.1.7. This shows in particular that if M is an n-manifold
then it is not an m-manifold where m ̸= n.

We are going to talk a lot about homology groups of the form
H∗(M, M \K; R) where K is a compact subset of M, so it is convenient
to introduce some short-hand notation for these: We can think of H∗(M|K; R) as the “ho-

mology of M in a small neighbourhood
of K”.Notation 11.1.8. We write H∗(M|K; R) := H∗(M, M \ K; R). If K ⊆ L

then we denote the homomorphism

H∗(M|L; R)→ H∗(M|K; R)
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coming from the inclusion of pairs (M, M \ L) ↪→ (M, M \ K) by ρL
K,

or just ρK if L is understood. If K = {x} consists of a single point, we
also write H∗(M|x; R) := H∗(M|{x}; R) and ρx := ρ{x}.

Here is our first result on the homology of manifolds:

Proposition 11.1.9. Let M be an n-manifold and K a compact subset of M.

(i) H∗(M|K; R) = 0 for ∗ > n.

(ii) A class α ∈ Hn(M|K; R) is zero if and only if ρxα = 0 in Hn(M|x; R)
for all x ∈ K.

Remark 11.1.10. Part (ii) of the proposition is equivalent to: the
homomorphism

Hn(M|K; R)→ ∏
x∈K

Hn(M|x; R) ∼= ∏
x∈K

R

is injective.

For the proof we need a variant of the Mayer–Vietoris sequence:

Lemma 11.1.11. Suppose A, B ⊆ X are a reasonable pair of subspaces, and
label the inclusions of subspace pairs as

(X, A ∩ B) (X, A)

(X, B) (X, A ∪ B).

i

i′ j

j′

Then there is a natural long exact sequence

· · · → Hn(X, A∩B)
(i∗ ,i′∗)−−−→ Hn(X, A)⊕Hn(X, B)

j∗−j′∗−−−→ Hn(X, A∪B)→ Hn−1(X, A∩B)→ · · ·

Proof. Whenever we have two subgroups N, N′ of an abelian group
M, we have a commutative square

M/(N ∩ N′) M/N

M/N′ M/(N + N′)

p

p′ q

q′

where the maps give a natural short exact sequence

0→ M/(N ∩ N′)
(p,p′)−−−→ M/N ⊕M/N′

q−q′−−→ M/(N + N′)→ 0.

For any pair of subspaces A, B we therefore have a short exact se-
quence of chain complexes

0→ S•(X, A ∩ B)→ S•(X, A)⊕ S•(X, B)→ S•(X, A + B)→ 0.

If A, B are a reasonable pair of subspaces then this gives a long exact
sequence of the required form by Proposition 9.5.9.

Remark 11.1.12. If M is an n-manifold and K, L ⊆ M are compact
subsets, then this long exact sequence for the open subsets M \ K,
M \ L can be written as

· · · → Hk(M|K∪ L)
(ρK∪L

K ,ρK∪L
L )

−−−−−−→ Hk(M|K)⊕Hk(M|L)
ρK

K∩L−ρL
K∩L−−−−−−→ Hk(M|K∩ L)→ Hk−1(M|K∪ L)→ · · · .
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Proof of Proposition 11.1.9. We first prove the case M = Rn in several
steps: First suppose K is a compact convex subset of Rn and x is a
point of K. By Lemma 11.1.6 it is enough to show that the inclusion
of pairs (Rn, Rn \ K) → (Rn, Rn \ {x}) gives an isomorphism in
homology. Using the map of long exact sequences for the two pairs
and the 5-Lemma we see that it suffices to show that the inclusion
Rn \ K ↪→ Rn \ {x} gives isomorphisms in homology. To prove this
we choose a large sphere S centred at x such that K is contained
in the open ball bounded by S. Then the inclusion S ↪→ Rn \ K
is a deformation retract: we define a retraction ρ : Rn \ K → S by
taking a point y to the point where the line from x to y intersects
S; the homotopy between ρ and the identity on Rn \ K is given by
moving along the line from y to ρ(y) — since K is convex this line
segment necessarily lies in Rn \ K. The inclusion of S into Rn \ {x}
is a deformation retract in the same way, so the inclusion Rn \ K ↪→
Rn \ {x} must also give isomorphisms in homology by the 2-of-3
property for isomorphisms.

Next suppose K ⊆ Rn is a finite union K1 ∪ · · · ∪ Kr where the Ki

are compact convex subsets. We just proved the case r = 1 so we
induct on r and set K′ := K1 ∪ · · · ∪ Kr−1. Note that K′ ∩ Kr is the
union of the r− 1 compact convex sets K1 ∩ Kr, . . . , Kr−1 ∩ Kr. We use
the exact sequence of Lemma 11.1.11 as in Remark 11.1.12 to get a
long exact sequence

· · · → Hk+1(R
n|K′ ∩Kr)→ Hk(R

n|K)→ Hk(R
n|K′)⊕Hk(R

n|Kr)→ · · ·

If k > n the terms around Hk(R
n|K) are 0 by the inductive hypothesis,

hence Hk(R
n|K) = 0, while if k = n we know that Hn+1(R

n|K′ ∩
Kr) = 0 so that the map

Hn(R
n|K)→ Hn(R

n|K′)⊕ Hn(R
n|Kr)

is injective. This means a class α ∈ Hn(Rn|K) is zero if and only if
ρK′α = 0 and ρKr α = 0. Applying the inductive hypothesis to these
two classes it follows that α = 0 if and only if ρxα = 0 for all x ∈ K.

Now let K be an arbitrary compact subset of Rn. Given α ∈
Hi(R

n|K) we can lift α to a chain γ ∈ Si(R
n) whose image in

Si(R
n, Rn \K) is a cycle that represents α. The boundary ∂γ is a linear

combination of simplices whose image is contained in a compact set L
disjoint from K. Choose a compact neighbourhood N of K (meaning
N contains an open neighbourhood of every point of K) such that
N ∩ L = ∅. Then the image of γ in Si(R

n, Rn \ N) is also a cycle,
representing a homology class α′ ∈ Hi(R

n|N) such that α = ρKα′. We
can cover K by finitely many closed balls B1, . . . , Br such that Bi ⊆ N
and Bi ∩ K ̸= ∅. Set B := B1 ∪ · · · ∪ Br. Then if i > n we must have
ρBα′ = 0 by the previous case, hence α = ρN

K α′ = ρB
KρN

B α′ = 0, which
implies that Hi(R

n, Rn|K) = 0 for i > n. If i = n and ρxα = 0 for
x ∈ K, then ρBi α

′ = 0 for all i since the first case implies ρ
Bi
b is an

isomorphism for any b ∈ Bi. Hence ρxα′ = 0 for all x ∈ B and so
ρN

B α′ = 0 which implies α = 0, as required.
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Now we consider a general n-manifold M. First suppose K ⊆ M
is a compact subset such that there exists an open subset U such
that U ∼= Rn and K ⊆ U. Then H∗(M|K) ∼= H∗(U|K) by excision,
and the assertion follows from the case of Rn. For a general K, we
can write K as a finite union K1 ∪ · · · ∪ Kr where the previous case
applies to each Ki. We can then induct on r using the exact sequence
of Lemma 11.1.11 as in the case of a finite union of compact convex
subsets above.

Corollary 11.1.13. If M is a compact n-manifold, then H∗(M; R) = 0 for
∗ > n.

11.2 Orientations and Fundamental Classes

We now want to define orientations of (compact) manifolds M, and
prove that an orientation determines a unique generator of Hn(M),
the fundamental class of M. We can formulate the main result we
need for this as a description of the image of the injection from
Proposition 11.1.9:

Definition 11.2.1. For M an n-manifold and T ⊆ M any subset, let
Γ(M|T; R) denote the subgroup of ∏x∈T Hn(M|x; R) consisting of
elements (αx)x∈T such that for every x ∈ T there exists a compact
neighbourhood N ⊆ T of x and a class αN ∈ Hn(M|N; R) such that
for every y ∈ N we have ρyαN = αy.

Remark 11.2.2. By a compact neighbourhood of x in T we mean a
compact subset N with x ∈ N such that N contains an open neigh-
bourhood of x in T.

Proposition 11.2.3. For M an n-manifold and K ⊆ M compact, the restric-
tions ρx : Hn(M|K; R)→ Hn(M|x; R) for x ∈ K induce an isomorphism

Hn(M|K; R) ∼−→ Γ(M|K; R).

Proof. It is clear from the definition that the homomorphism

Hn(M|K; R)→ ∏
x∈K

Hn(M|x; R)

factors through Γ(M|K; R) (since we can take the neighbourhood K
at each point), and this is moreover injective by Proposition 11.1.9. It
therefore remains only to show that this homomorphism is surjective.
Let (αx)x∈K be an element of Γ(M|K; R). By assumption, for any
x ∈ K there exists a compact neighbourhood N and a class αN ∈
Hn(M|N) such that αy = ρyαN for all y ∈ N. Since K is compact we
can write K as a finite union K1 ∪ · · · ∪ Kr where each Ki is a compact
set where such a class αKi exists. Set K′i := K1 ∪ · · · ∪ Ki, then we will
prove by induction on i that there exists a class αK′i

∈ Hn(M|K′i ; R)
such that ρxαK′i

= αx for all x ∈ K′i .
If we know this for K′i−1 we can use the exact sequence of Lemma 11.1.11

as in Remark 11.1.12 to get a long exact sequence

· · · → Hn+1(M|K′i−1∩Ki)→ Hn(M|K′i)→ Hn(M|K′i−1)⊕Hn(M|Ki)→ Hn(M|K′i−1∩Ki)→ · · ·
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Here Hn+1(M|K′i−1 ∩ Ki) = 0 by Proposition 11.1.9(i), while Propo-
sition 11.1.9(ii) implies that ρK′i−1∩Ki

αK′i−1
− ρK′i−1∩Ki

αKr = 0 since it
restricts to 0 at all x ∈ K′ ∩ Kr by construction. By exactness this im-
plies that there is a class αK′i

∈ Hn(M|K′i) such that ρK′i−1
αK′i

= αK′i−1

and ρKi αK′i
= αKi . Then ρxα′K′i

= αx for all x ∈ K′i , as required. Since

K = K′r, by induction we get αK as αK′r .

Definition 11.2.4. Let M be an n-manifold (not necessarily compact)
and R a commutative ring. An R-orientation of M is an element
(αx)x∈M of Γ(M|M; R) such that αx is a generator of Hn(M|x; R) ∼= R
for every x ∈ M. We say that M is R-orientable if there exists an
R-orientation, while M is R-oriented if we equip it with a choice of
orientation. If R = Z we just say that M is orientable.

Remark 11.2.5. An n-manifold is orientable in this sense if and only
if it is orientable in more geometric terms, but proving this is a little
beyond the scope of this course as it requires covering spaces.

Remark 11.2.6. Not every n-manifold is Z-orientable: if we start with
a generator u ∈ Hn(M|x) we can always extend this uniquely to a
neighbourhood of x: if U ⊆ M is an open neighbourhood of x that is
homeomorphic to Rn we can let B ⊆ U be the image of a closed ball
around the image of x in Rn; then ρB

x : Hn(M|B) ∼−→ Hn(M|x) is an
isomorphism, and we can assign the generator ρB

y (ρ
B
x )
−1u to y ∈ B.

The issue is that we may not be able to consistently extend this to all
of M: although an extension to a neighbourhood of a point always
exists, it might be that if we make a sequence of such extensions
around a closed loop that starts at x, then the generator we get at the
end is −u.

Remark 11.2.7. If we take R = F2, however, this issue does not arise,
since there is no choice of generator involved: any isomorphism of free
rank-1 F2-modules must take the unique non-zero element to itself.
Thus every compact manifold is F2-orientable (and the orientation is
unique).

Definition 11.2.8. If M is an R-oriented compact n-manifold, then
there exists a unique homology class [M] ∈ Hn(M) that corresponds
to the orientation under the equivalence of Proposition 11.2.3 (in the
case K = M). The class [M] is called the fundamental class of M.

Remark 11.2.9. We should think of the class [M] as representing “the
whole manifold M”. For example, if we can describe M as a ∆-set
of dimension n then we can represent [M] as a simplicial chain by
adding up the top-dimensional simplices, but with appropriate signs:
every (n− 1)-simplex appears as a face of exactly 2 n-simplices, and
we need these to appear with opposite signs in the boundary to get
a cycle. If M is oriented it can be shown that the orientation can be
used to determine such signs — alternatively, if we work over F2 we
always get a cycle since the two copies of each face cancel.

Proposition 11.2.10. If M is a compact connected n-manifold, then

ρx : Hn(M; R)→ Hn(M|x; R) ∼= R
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is injective, and if M is R-orientable then this is an isomorphism.

Proof. By Proposition 11.2.3 to prove the first statement it suffices to
show that the projection Γ(M|M; R) → Hn(M|x; R) is injective. For
(αx)x∈M ∈ Γ(M|M; R), let V ⊆ M be the subset of points x where
αx = 0. We will show that V is both open and closed. For any point
x in M, by assumption there exists a compact neighbourhood N of
x and a class αN ∈ Hn(M|N; R) such that αy = ρN

y αN for y ∈ N. We
can then choose an open neighbourhood U of x such that U ∼= Rn

and a compact neighbourhood B ⊆ U ∩ N corresponding to a closed
ball around x under this homeomorphism. Then we know from
the proof of Proposition 11.1.9 that ρB

y : Hn(M|B) → Hn(M|y) is
an isomorphism for all y ∈ B. Thus if x ∈ V we have that αy =

ρB
y (ρ

B
x )
−1αx = 0 for all y ∈ B. On the other hand, if x /∈ V then αy ̸= 0

for y ∈ B by the same argument. In particular, both V and M \ V
contain open neighbourhoods of each of their points, and hence are
open. Since M is connected, it follows that we must have V = ∅ or
V = M, which implies injectivity.

Finally, if M is orientable, then we know the image of Hn(M) in
Hn(M|x; R) contains a generator, and hence ρM

x must also be surjec-
tive.

Remark 11.2.11. With some more work (which is again a bit beyond
the scope of the course as it involves covering spaces) it can be shown
that if M is not R-orientable then the image of ρx is the 2-torsion
subgroup of R. In particular, for R = Z it follows that for a compact
n-manifold M the group Hn(M) is either Z, if M is orientable, or
0, if M is not orientable. For example, we can immediately read off
from the homology of RPn that RPn is orientable if n is odd, and
non-orientable if n is even.

11.3 Cap Products

Our next goal is to state the Poincaré duality theorem, which says that
for a compact oriented manifold M there is an isomorphism between
homology and cohomology groups,

Hk(M) ∼= Hn−k(M).

The map that gives this isomorphism arises by applying a general
construction, the cap product, to the fundamental class of M.

Definition 11.3.1. For any chain complex C• and abelian group M,
there is a natural evaluation pairing

ev : Hom(C, M)• ⊗ C• → M[0],

given in degree 0 on the generator ϕ⊗ x for x ∈ Cn, ϕ ∈ Hom(C, M)−n =

Hom(Cn, M) by

ev(ϕ⊗ x) = (−1)λ(n)ϕ(x)
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where

λ(n) =

0, n ≡ 0, 3 (mod 4),

1, n ≡ 1, 2 (mod 4).

In particular, for any topological space X this gives a natural chain
map

ev : S•(X; M)⊗ S•(X)→ M[0].

If R is a ring, we can combine this with multiplication in R to get a
pairing

evR : S•(X; R)⊗S•(X; R) ∼= S•(X; R)⊗S•(X)⊗R[0] ev⊗id−−−→ R[0]⊗R[0]→ R[0].

This descends on homology to a pairing In fact, this pairing is R-bilinear, and so
corresponds to a graded R-module ho-
momorphism H∗(X; R)⊗R H∗(X; R)→
R[0]

κR : H∗(X; R)⊗ H∗(X; R)→ R[0],

called the Kronecker pairing.

Remark 11.3.2. The sign is necessary to get a chain map with our
sign convention for Hom(C, M), since for x ∈ Cn+1, ϕ ∈ Hom(Cn, M)

we need

ev(d(ϕ⊗ x)) = ev(dϕ⊗ x + (−1)nϕ⊗ dx)

= (−1)λ(n+1)ϕ(dx) + (−1)n(−1)λ(n)ϕ(dx)

=
(
(−1)λ(n+1) + (−1)n+λ(n)

)
ϕ(dx)

so that the parity of λ(n + 1) must be the opposite of that of n + λ(n)
for all n. The evaluation pairing corresponds to the identity map of
Hom(C, M)• under the equivalence of Exercise 9.4.

Definition 11.3.3. For any topological space X and ring R, combining
the diagonal and the Eilenberg–Zilber map gives a natural chain map

S•(X; R) ∆∗−→ S•(X× X; R)→ S•(X)⊗ S•(X; R).

Combining this with the evaluation pairing, we get a natural chain
map

S•(X; R)⊗S•(X; R)→ S•(X; R)⊗S•(X)⊗S•(X; R)→ R[0]⊗S•(X; R)→ S•(X; R),

where the last map uses the multiplication in R. which we call the
(chain-level) cap product. We denote the cap product of ϕ ∈ Sn(X; R),
c ∈ Sm(X; R) by ϕ ⌢ c ∈ Sm−n(X; R). The cap product descends to
homology as a map

H∗(X; R)⊗ H∗(X; R)→ H∗(X; R),

which we also call the cap product and denote in the same way; note
that this is independent of the choice of Eilenberg–Zilber maps.

Remark 11.3.4. The fact that the cap product is a chain map amounts
to the relation

∂(ϕ ⌢ c) = δϕ ⌢ c + (−1)nϕ ⌢ ∂c

in Sm−n(X; R) for ϕ ∈ Sn(X; R), c ∈ Sm(X; R).
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Variant 11.3.5. If A and B are a reasonable pair of subspaces of X,
then we can use the chain map

S•(X, A ∪ B) ∆∗−→ S•(X× X, A× X ∪ X× B)

and the chain homotopy equivalence between S•(X × X, A × X ∪
X × B) and S•(X, A) ⊗ S•(X, B) to get a relative cap product as the
composite

S•(X, A; R)⊗S•(X, A∪B; R)→ S•(X, A; R)⊗S•(X, A)⊗S•(X, B; R) ev⊗id−−−→ R[0]⊗S•(X, B; R)→ S•(X, B; R)

where the last map uses the multiplication in R. In particular, for any
subspace A we have a relative cap product

S•(X, A; R)⊗ S•(X, A; R)→ S•(X; R).

Lemma 11.3.6. The cap product is related to the Kronecker pairing and cup
product by the following formulae for ϕ, ψ ∈ H∗(X; R), α ∈ H∗(X; R):

(i) κR(ϕ, ψ ⌢ α) = κR(ϕ ⌣ ψ, α)

(ii) (ϕ ⌣ ψ) ⌢ α = ϕ ⌢ (ψ ⌢ α),

(iii) 1 ⌢ α = α.

Proof. We will prove the case R = Z, to keep the diagrams a bit
smaller, but the same strategy works for a general ring R. We use
some naturality properties of the evaluation pairings, which we leave
to the reader to verify: First, for any chain map ϕ : C• → D•, we have
a commutative square

Hom(D, M)• ⊗ C• Hom(D, M)• ⊗ D•

Hom(C, M)• ⊗ C• M[0].

id⊗ϕ

ϕ∗⊗id evD

evC

Second, for chain complexes C•, D•, we have a commutative triangle

Hom(C, M)• ⊗ C• ⊗Hom(D, N)• ⊗ D•

M[0]⊗ N[0]

Hom(C⊗ D, M⊗ N)• ⊗ C• ⊗ D•.

evC⊗evD

evC⊗D

To prove (i), consider the diagram

S•(X)⊗ S•(X)⊗ S•(X) Hom(S•(X)⊗ S•(X), Z)⊗ S•(X) S•(X)⊗ S•(X)

S•(X)⊗ S•(X)⊗ S•(X)⊗ S•(X) Hom(S•(X)⊗ S•(X), Z)⊗ S•(X)⊗ S•(X) Z[0]

S•(X)⊗ S•(X).

ev

id⊗ev⊗id

ev

ev
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Here the top left square commutes by naturality, the top right square
commutes by the first naturality property of ev (applied to the compos-

ite S•(X)
∆∗−→ S•(X× X)→ S•(X)⊗ S•(X)) and the bottom triangle

by the second. The path along the top row and right column gives
κZ(ϕ ⌣ ψ, α) in homology, while the path along the left column and
bottom gives κZ(ϕ, ψ ⌢ α).

To prove (ii), consider the diagram

S•(X)⊗ S•(X)⊗ S•(X) Hom(S•(X)⊗ S•(X), Z)⊗ S•(X) S•(X)⊗ S•(X)

S•(X)⊗ S•(X)⊗ S•(X)⊗ S•(X) Hom(S•(X)⊗ S•(X), Z)⊗ S•(X)⊗ S•(X) S•(X)⊗ S•(X)⊗ S•(X)

S•(X)⊗ S•(X)⊗ S•(X)⊗ S•(X)⊗ S•(X) Hom(S•(X)⊗ S•(X), Z)⊗ S•(X)⊗ S•(X)⊗ S•(X) S•(X)

S•(X)⊗ S•(X)⊗ S•(X).

ev⊗id

ev⊗id

ev⊗id

Here the three squares in the top row and the leftmost column
commute by naturality, and the last square and bottom triangle arise
from the naturality properties of ev by tensoring with S•(X).

Finally, to prove (iii) we consider the diagram

Z⊗ S•(X) S•(∗)⊗ S•(X) S•(X)⊗ S•(X)

Z⊗ S•(X)⊗ S•(X) S•(∗)⊗ S•(X)⊗ S•(X) S•(X)⊗ S•(X)⊗ S•(X)

Z⊗ S•(∗)⊗ S•(X) S•(∗)⊗ S•(∗)⊗ S•(X) S•(X)

Z⊗Z⊗ S•(X).

ev⊗id

ev⊗id

ev⊗id

Here the three squares in the top row and left-most column commute
by naturality, and the lower right and (deformed) bottom squares
commute by the first naturality property of ev applied to the maps
S•(X) → S•(∗) and S•(∗) → Z[0]. The composite along the left
column and bottom gives the identity in homology because the evalu-
ation pairing for Z is the canonical isomorphism, while the composite
S•(X) → S•(∗) ⊗ S•(X) → Z ⊗ S•(X) is chain homotopic to the
canonical isomorphism by Proposition 10.3.1(ii).

The following exercise gives a more concrete proof of these identi-
ties:

Exercise 11.1. Use the explicit formula for the Alexander–Whitney map to get
a formula for the chain-level cap product, and use this to prove the identities
relating the cap product to the cup product and Kronecker pairing.

Lemma 11.3.7. For f : X → Y a continuous map, ϕ ∈ Hn(Y; R) and
α ∈ Hm(X; R) we have

f∗( f ∗ϕ ⌢ α) = ϕ ⌢ f∗α

in Hm−n(Y; R), while if n = m we also have

κR(ϕ, f∗α) = κR( f ∗ϕ, α).
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Proof. We prove the first statement; the second is proved similarly by
a slightly simpler diagram. Consider the diagram

S•(Y)⊗ S•(X) S•(Y)⊗ S•(Y)

S•(X)⊗ S•(X) S•(Y)⊗ S•(X)⊗ S•(X) S•(Y)⊗ S•(Y)⊗ S•(X) S•(Y)⊗ S•(Y)⊗ S•(Y)

S•(X)⊗ S•(X)⊗ S•(X) S•(X) S•(Y).

f ∗⊗id

id⊗ f∗

id⊗ f∗⊗id

f ∗⊗id⊗id

id⊗id⊗ f∗

ev⊗id ev⊗id

ev⊗id f∗

The middle square in the bottom row commutes by the first naturality
property of ev from the proof of Lemma 11.3.6, while the three other
squares commute by naturality.

We can now make a precise statement of the version of Poincaré
duality we want to prove:

Theorem 11.3.8 (Compact Poincaré duality). Let M be an R-oriented
compact n-manifold. Then the cap product with the fundamental class gives
isomorphisms

– ⌢ [M] : Hk(M; R) ∼−→ Hn−k(M; R).

Remark 11.3.9. If k is a field then the universal coefficient theorem
gives an isomorphism Hi(M; k) ∼= Homk(Hi(M; k), k) = Hi(M; k)∨.
Assuming these k-vector spaces are finite-dimensional (which is true
at least if n ̸= 4 or the manifold is smooth, since then it is a finite
cell complex) Poincaré duality implies that there are non-canonical
isomorphisms

Hi(M; k) ∼= Hn−i(M; k).

Example 11.3.10. S1 ∨ S3 is not homotopy equivalent to a compact
manifold: We have

H∗(S1 ∨ S3; F2) ∼=

Z/2, ∗ = 0, 1, 3,

0, otherwise.

Thus such a manifold would have to be 3-dimensional, as the top
non-zero homology group is in degree 3, but then Poincaré duality
would imply

H1(S1 ∨ S3; F2) ∼= H3−1(S1 ∨ S3; F2),

which is false.

Exercise 11.2. Let M be a compact n-manifold whose homology groups are
all finitely generated. (This is in fact true for all compact smooth manifolds.)

(i) Show that if M is orientable, then it is R-orientable for every commuta-
tive ring R. [Use the universal coefficient theorem.]

(ii) Show that if M is orientable, then Hn−1(M) contains no torsion. [Apply
Poincaré duality with Z/p-coefficients and the universal coefficient
theorem for every prime p.]

(iii) Suppose M is non-orientable and assume this implies M is also not Z/p-
orientable for any odd prime p, and that Hn(M) = Hn(M; Z/p) = 0.
Show that the torsion subgroup of Hn−1(M) is Z/2.
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11.4 Application to Cup Products

Before we turn to the proof of Theorem 11.3.8, we will discuss some
consequences for cup products. This will lead to a simple proof of
the cup product structure on projective spaces.

Definition 11.4.1. Let R be a commutative ring. By a generalization
of Exercise 8.4, a homomorphism of R-modules ϕ : M ⊗R N → P
corresponds to a homomorphism M → HomR(N, P) given by m 7→
ϕ(m ⊗ –). We will refer to this as the adjoint homomorphism in the
second variable (with the adjoint in the first variable defined similarly,
or using the natural isomorphism M⊗R N ∼= N ⊗R M).

Warning 11.4.2. The adjoint of the Kronecker pairing is a natural map

κ′R : H∗(X; R)→ HomR(H∗(X; R), R)

Note that for R = Z this is not quite the same as the map we used
earlier in the course to prove the universal coefficient theorm, as
it differs from it by the sign (−1)λ(n) in degree n. However, the
statement of the universal coefficient theorem is equally true for this
map.

Remark 11.4.3. The relation from Lemma 11.3.6(i) can be interpreted
as saying that for any topological space X and ϕ ∈ Hk(X; R), there
are commutative squares

Hl(X; R) HomR(Hl(X; R), R)

Hk+l(X; R) HomR(Hk+l(X; R), R).

κ′R

ϕ⌣– (ϕ⌢–)∗

κ′R

If R is a field or R = Z and the homology groups of X are free then
the universal coefficient theorem for cohomology implies (as the Ext
term vanishes) that the horizontal maps here are isomorphisms. Thus
in this case the cup products are determined by cap products, and
vice versa.

Definition 11.4.4. For R-modules M, N, a perfect pairing is an R-
module homomorphism

µ : M⊗R N → R

such that the adjoint homomorphisms in each variable are isomor-
phisms,

M ∼−→ HomR(N, R), N ∼−→ HomR(M, R).

Proposition 11.4.5. Let M be a compact R-oriented n-manifold. Then the
cup product pairing

Hn−k(M; R)⊗R Hk(M; R) ⌣−→ Hn(M; R)
κR(–,[M])−−−−−→ R

is perfect if either R is a field or R = Z and the homology of M is free.
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Proof. By Remark 11.4.3 we can equivalently define this pairing as
the composite

Hn−k(M; R)⊗R Hk(M; R)
id⊗(–⌢[M])−−−−−−−→ Hn−k(M; R)⊗Hn−k(M; R)

κR−→ R.

The adjoint in the second variable is therefore the composite

Hn−k(M; R)
κ′R−→ HomR(Hn−k(M; R), R)

(–⌢[M])∗−−−−−→ HomR(Hk(M; R), R).

Here our assumptions guarantee that the first map is an isomorphism
by the universal coefficient theorem for cohomology, while the second
is an isomorphism by Poincaré duality. The proof for the first variable
is the same.

Corollary 11.4.6. Let M be a compact connected R-oriented n-manifold.

(i) If R = Z and the homology of M is free and α ∈ Hk(M) generates a
summand Zα of Hk(M), then there exists a class β ∈ Hn−k(M) such
that α ⌣ β is a generator of Hn(M) ∼= Z.

(ii) If R is a field then for any α ∈ Hk(M; R) there exists an element
β ∈ Hn−k(M; R) such that α ⌣ β ̸= 0 in Hn(M; R) ∼= R.

Proof. In (i), projection to the summand generated by α defines a
homomorphism π : Hk(M)→ Z with π(α) = 1. By Proposition 11.4.5
there exists a unique class β ∈ Hn−k(M) such that for any ξ ∈ Hk(M)

we have
π(ξ) = κZ(ξ ⌣ β, [M]).

Thus in particular κZ(α ⌣ β, [M]) = π(α) = 1, which implies that
κZ(1, (α ⌣ β) ⌢ [M]) = 1. But

κZ(1, –) : H0(M)→ Z

is an isomorphism since M is connected, so this implies that the
class (α ⌣ β) ⌢ [M] is a generator of H0(M), and hence α ⌣ β is
a generator of Hn(M) by Poincaré duality. The proof of (ii) is the
same.

Example 11.4.7. This implies that the space S2 ∨ S4 is not homotopy
equivalent to a compact manifold: Since its top-dimension homology
group with F2-coefficients is in degree 4, it would have to be a 4-
manifold, but if x is a generator of H2(S2 ∨ S4; F2) ∼= Z/2 then we
know x2 = 0, and so the cup product pairing is not perfect.

This result also gives an easy description of the cup product for
real and complex projective space:

Corollary 11.4.8. There are isomorphisms of graded rings

H∗(RPn; F2) ∼= F2[x]/(xn+1)

where x is a generator in degree 1,

H∗(CPn; Z) ∼= Z[x]/(xn+1)

where x is a generator in degree 2.
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Proof. The space RPn is a compact connected n-manifold (necessarily
F2-oriented), while CPn is a compact connected Z-orientable 2n-
manifold. As in the previous proof of Theorem 10.4.4 we can induct on
n, and so to get the ring structure it is enough to show that xn−1 ⌣ x
is a generator of Hn(RPn; F2) or H2n(CPn). By Corollary 11.4.6 there
exists some integer m such that (mxn−1) ⌣ x = m(xn−1 ⌣ x) is a
generator, which is clearly impossible unless m = ±1.

Remark 11.4.9. Suppose M is a compact connected oriented n-manifold
and N, K ⊆ M are oriented submanifolds of dimensions p, q, re-
spectively. If N and K intersect transversely (a somewhat technical
condition that can always be achieved by perturbing the submani-
folds) then N ∩ K is a submanifold of dimension p + q− n (empty
if p + q < n), with a canonical orientation inherited from those of
N, K, M. Let us write [N] ∈ Hp(M) for the image of [N] ∈ Hp(N) via
the inclusion N ↪→ M, and similarly for [K] and [N ∩ K], and denote
by [N]∨ ∈ Hn−p(M) etc. the Poincaré dual cohomology classes, then
it can be shown that we have

[N]∨ ⌣ [K]∨ = [N ∩ K]∨

in H2n−p−q(M), giving a geometric interpretation of this cup product
in terms of intersections. For p + q = n the intersection N ∩K consists
of a finite set of points, and so under the isomorphism Hn(M) ∼= Z

we get
[N]∨ ⌣ [K]∨ = ∑

x∈N∩K
±1,

with the signs determined by the orientations. In particular, this
signed sum over intersection points is invariant under deformations
of the submanifolds N and K. (If we work instead with F2-coefficients,
we see that (without orientations) the parity of the number of inter-
section points is invariant under deformations.)

Exercise 11.3. Use Poincaré duality to show that Sn ∨ Sm is not homotopy
equivalent to a compact manifold for n, m > 0. [In the case m = 2n you need
to use the cup product, which you computed in Exercise 10.6.]

Exercise 11.4. Use the Künneth theorem to compute the integral (co)homology
of the n-torus

Tn := (S1)×n.

Apply Poincaré duality to deduce the binomial coefficient identity(
n
k

)
=

(
n

n− k

)
.

What is the ring structure?

Exercise 11.5. For which n does there exist a compact connected oriented
2n-manifold M such that Hn(M) ∼= Z?

11.5 (⋆) Cohomology with Compact Support

Although our goal is to prove the Poincaré duality isomorphism for
compact manifolds, to do so we want to work locally on the manifold.
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But since an open subset of a compact manifold is typically no longer
compact, this means we need to consider a version of Poincaré duality
for non-compact manifolds. If we look at the non-compact manifold
Rn then we know that

H∗(Rn) ∼= H∗(Rn) ∼=

Z, ∗ = 0

0, ∗ ̸= 0,

so we clearly don’t have Poincaré duality in the form of Theorem 11.3.8.
To fix this we need to introduce a new variant of cohomology, namely
cohomology with compact support:

Definition 11.5.1. Let X be a topological space. A cochain ϕ ∈
Sk(X; R) ∼= RSingk(X) has compact support if there exists a compact
subset K ⊆ X such that for every singular simplex σ : ∆k → X we
have ϕ(σ) = 0 if σ(∆k) ⊆ X \ K. The cochains with compact support
form a subgroup of Sk(X; R), which we denote Sk

c(X; R). If ϕ has
compact support, then so does δϕ, so the cochains with compact
support form a subcomplex S•c (X; R). We denote its homology by
H∗c (X; R) and call this the cohomology with compact support of X (with
coefficients in R).

Remark 11.5.2. If X is itself compact then every cochain has compact
support, so in this case H∗c (X; R) ∼= H∗(X; R).

Exercise 11.6. Show that if X is path-connected and non-compact, then
H0

c (X) = 0. [Hint: Use the definition of S•c (X) as a subcomplex of S•(X).]

It is convenient to reformulate this definition using the general
categorical notion of colimits:

Definition 11.5.3. Let F : I → C be a functor. The colimit of F, if it
exists, is an object colim F together with maps ui : F(i) → colim F
such that for every morphism f : i→ j the triangle

F(i) F(j)

colim F

F( f )

ui
uj

commutes, with the universal property that given an object x ∈ C and
morphisms ϕi : F(i) → x such that ϕi = ϕjF( f ) for every morphism
f : i → j in C, then there exists a unique morphism ϕ : colim F → x
such that ϕi = ϕui for all i.

Example 11.5.4. Coproducts, pushouts, and sequential colimits are
special cases of colimits we have encountered earlier in the course.

Remark 11.5.5. Given a functor F : I→ Ab, its colimit exists and fits
in a short exact sequence

0→
⊕

f : i→j

F(i)
α−β−−→

⊕
i∈I

F(i)→ colimI F → 0,

where α takes x ∈ F(i) in the component indexed by f : i → j to
x in the component F(i) indexed by i and β takes it to F( f )(x) in
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the component indexed by j. Moreover, colimits in Ch can be com-
puted degreewise, and we get a similar short exact sequence of chain
complexes for a functor F : I→ Ch.

Notation 11.5.6. As we did for homology, let us also write

H∗(M|K; R) := H∗(M, M \ K; R)

for M a manifold and K ⊆ M, and similarly for the corresponding
singular cochains.

Lemma 11.5.7. If M is a manifold, let Cpt(M) denote the partially ordered
set of compact subsets of M, ordered by inclusion, viewed as a category.
Then S•c (M; R) is the colimit of the functor Cpt(M) → Ch that takes K
to S•(M|K; R) and an inclusion K ↪→ L to the chain map S•(M|K; R)→
S•(M|L; R) induced by the inclusion of pairs (M, M \ L)→ (M, M \ K).

We leave the proof as an exercise for the reader.

Definition 11.5.8. A category I is filtered if given any pair of objects
i, i′ there exists a third object i′′ and maps i → i′′, i′ → i′′, and if for
every pair of parallel morphisms f , g : i→ j there exists a morphism
h : j→ k such that h f = hg. (Note that if I is a partially ordered set,
the second condition is vacuous, and the first says that for any pair of
objects i, i′ there exists a third object that is bigger than both i and i′.)

Example 11.5.9. If M is a manifold, then the partially ordered set
Cpt(M) is filtered, since a finite union of compact sets is compact.

Fact 11.5.10 (Homology commutes with filtered colimits). If I is a
filtered category then for any functor F : I→ Ch the natural map

colimI H∗(F)→ H∗(colimI F)

is an isomorphism.

Corollary 11.5.11. If M is a manifold then

H∗c (M; R) ∼= colimK∈Cpt(M) H∗(M|K; R).

Remark 11.5.12. If I is a partially ordered set, then a subset J ⊆ I is
called cofinal if for every i ∈ I there exists j ∈ J such that i ≤ j. Given
a functor F : I→ C, then for a cofinal subset J the canonical map

colimJ F|J → colimI F

is an isomorphism.

Example 11.5.13. In Rn, the subset of Cpt(Rn) consisting of closed
balls centred at 0 is cofinal. Therefore H∗c (Rn) is the colimit of
H∗(Rn|B) over all such balls. But H∗(Rn|0) → H∗(Rn|B) is an
isomorphism for every such B, and since Cpt(M) is filtered it can
be shown that this implies that H∗(Rn|0) ∼= H∗c (Rn). We know that
H∗(Rn|0) ∼= H̃∗(Sn) and so

H∗c (R
n) ∼=

Z, ∗ = n,

0, ∗ ̸= 0.

Thus H∗c (Rn) ∼= Hn−∗(Rn) as needed for Poincaré duality to hold
here.
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Remark 11.5.14. If the one-point compactification M+ of a manifold
M is reasonable, then there is an isomorphism H∗c (M) ∼= H̃∗(M+).
Since the one-point compactification of Rn is Sn, this result generalizes
the preceding computation.

Definition 11.5.15. Let M be an R-oriented n-manifold. Then for
every compact subset K, Proposition 11.2.3 implies that there exists
a unique class µM

K ∈ Hn(M|K; R) (or just µK if M is clear) such that
ρxµK agrees with the orientation at x for every x ∈ K. In particular,
for K ⊆ L we must have µK = ρL

KµL. We have relative cap products

Hi(M|K; R)⊗ Hj(M|K; R)→ Hj−i(M; R),

and so in particular a homomorphism

– ⌢ µK : Hi(M|K; R)→ Hn−i(M; R).

The naturality properties of the cap product then imply that for K ⊆ L
the triangle

Hi(M|K; R) Hi(M|L; R)

Hn−i(M; R)
⌢µK ⌢µL

commutes. By the universal property of the colimit, this means there
exists a unique homomorphism

DM : Hi
c(M; R)→ Hn−i(M; R)

such that the triangle

Hi(M|K; R) Hi
c(M; R)

Hn−i(M; R)
⌢µK DM

commutes for every K ⊆ M compact. We call this DM the duality map.

Remark 11.5.16. If M is a compact n-manifold then the duality map
DM is just – ⌢ [M], since this has the property that uniquely charac-
terizes DM.

Remark 11.5.17. If we apply the Kronecker pairing to the classes µK

then we similarly get a homomorphism∫
M

: Hn
c (M; R)→ R

such that the triangle

Hi(M|K; R) Hi
c(M; R)

R
κR(–,µK)

∫
M

commutes. We can informally think of this map as “integrating” a
compactly supported cochain over the manifold M.
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We then have the following generalization of Poincaré duality for
manifolds that are not necessarily compact:

Theorem 11.5.18 (Poincaré duality). If M is an R-oriented n-manifold,
then the duality map

DM : Hk
c (M; R)→ Hn−k(M; R)

is an isomorphism.

11.6 (⋆) Proof of Duality

Let us start by proving Theorem 11.5.18 when M is Rn:

Lemma 11.6.1. The duality map

DRn : Hk
c (R

n; R)→ Hn−k(R
n; R)

is an isomorphism.

Proof. Let B ⊆ Rn be a closed ball. Then we know H∗(Rn|B) ∼=
H̃∗(Sn) with µB as the generator for ∗ = n; in particular, this is free.
By the universal coefficient theorem for cohomology, the map Strictly speaking given the version of

this that we have proved we should as-
sume here that R is a principal ideal
domain, which is certainly true in the
interesting cases R = Z, F2.

κ′R : Hn(Rn|B; R)→ HomR(Hn(R
n|B; R), R)

is an isomorphism, so there exists a generator γ ∈ Hn(Rn|B; R) such
that κR(γ, µB) = 1. The identity

κR(γ, µB) = κR(1, γ ⌢ µB),

which follows from a relative variant of Lemma 11.3.6, implies that
γ ⌢ µB is a generator of H0(R

n; R) ∼= R. Thus ⌢ µB is an isomor-
phism

H∗(Rn|B; R) ∼−→ Hn−∗(R
n; R).

As in Example 11.5.13 the cohomology with compact support of Rn

is given by taking the colimit over such closed balls B, so (as the
diagram is filtered) we obtain in the colimit that the duality map

DRn : H∗c (R
n; R) ∼−→ Hn−∗(R

n; R),

is an isomorphism.

We want to prove Theorem 11.5.18 by reducing it to the case where
M is Rn. To do so we need to set up a new long exact sequence for
cohomology with compact support:

Lemma 11.6.2. Suppose M is an n-manifold and U, V are open subsets of
M such that M = U ∪V. Then there is a long exact sequence

· · · → Hi
c(U∩V; R)→ Hi

c(U; R)⊕Hi
c(V; R)→ Hi

c(M; R)→ Hi+1
c (U∩V; R)→ · · ·

Remark 11.6.3. Note that the maps here go the “wrong” way com-
pared to what we normally have in cohomology: for the inclusion
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U ⊆ M we have a covariant map H∗c (U; R) → H∗c (M; R). This is
defined as follows: for K ⊆ U compact the map

H∗(M, M \ K; R)→ H∗(U, U \ K; R)

is an isomorphism by excision. Taking the colimit over K, we get an
isomorphism

colimK∈Cpt(U) H∗(M, M \ K; R) ∼−→ H∗c (U; R).

On the other hand, the inclusion Cpt(U) ⊆ Cpt(M) gives a natural
map on colimits

colimK∈Cpt(U) H∗(M, M \K; R)→ colimK∈Cpt(M) H∗(M, M \K; R) ∼= H∗c (M; R).

Combining the two we get a map H∗c (U; R)→ H∗c (M; R), as required.

Proof of Lemma 11.6.2. Given K ⊆ U and L ⊆ V compact, we have a
diagram

S•(M, (M \ K) + (M \ L); R) S•(M|K; R)⊕ S•(M|L; R) S•(M|K ∪ L; R)

S•(U ∩V, (U ∩V \ K ∩V) + (U ∩V \U ∩ L); R) S•(U, U \ K; R)⊕ S•(V, V \ L; R) S•(M, M \ K ∪ L; R)

where the top row is a short exact sequence (it is Hom(–, R) applied
to the short exact sequence from the proof of Lemma 11.1.11) and
the vertical maps give isomorphisms in homology by excision. In
homology we therefore get a long exact sequence

· · · → Hi(U∩V|K∩ L; R)→ Hi(U|K; R)⊕Hi(V|L; R)→ Hi(M|K∪ L; R)→ Hi−1(U∩V|K∩ L; R)→ · · · .

The long exact sequence we want is then obtained by taking the
colimit of these long exact sequences over K ⊆ U, L ⊆ V compact
(using cofinality arguments to identify the colimit of Hi(M|K ∪ L; R)
with Hi

c(M; R) and that of Hi(U ∩V|K ∩ L; R) with Hi
c(U ∩V).

We also need to know the duality morphisms relate this new long
exact sequence to a Mayer–Vietoris sequence in homology:

Proposition 11.6.4. Suppose M is an R-oriented n-manifold and U, V are
open subsets of M such that M = U ∪ V. Then there is a commutative
diagram

· · · Hi
c(U ∩V; R) Hi

c(U; R)⊕ Hi
c(V; R) Hi

c(M; R) Hi+1
c (U ∩V; R) · · ·

· · · Hn−i(U ∩V; R) Hn−i(U; R)⊕ Hn−i(V; R) Hn−i(M; R) Hn−i−1(U ∩V; R) · · · ,

DU∩V (DU ,DV) DM DU∩V

where the bottom row is a Mayer–Vietoris sequence, and the top row is the
long exact sequence from Lemma 11.6.2.

Proof. To obtain the required compatibility it is convenient to derive
the Mayer–Vietoris sequence as the homology long exact sequence
corresponding to the short exact sequence of chain complexes

0→ S•(U ∩V; R)→ S•(U; R)⊕ S•(V; R)→ S•(U + V; R)→ 0,
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which has the right form in homology by the locality theorem for
the cover of M by U and V. We will prove that given K ⊆ U
and L ⊆ V compact, we can choose representatives of the classes
µM

K∪L, µU
K , µV

L , µU∩V
K∩L (which we denote by µ̄ with the same decorations,

such that we have a commutative diagram of chain complexes

S•(M|K ∩ L; R) S•(M|K; R)⊕ S•(M|L; R) S•(M|K ∪ L; R)

S•(U ∩V|K ∩ L; R) S•(U|K; R)⊕ S•(V|L; R)

S•(U ∩V; R)[n] S•(U; R)[n]⊕ S•(V; R)[n] S•(M; R)[n],

⌢µ̄M
K∪L

⌢µ̄U∩V
K∩L (⌢µ̄U

K ,⌢µ̄V
L )

where C•[n] := C• ⊗Z[n] denotes the shift of a chain complex C• by
n.

The rows are not short exact sequences, but they are naturally chain
homotopy equivalent to the short exact sequences of chain complexes
that we used to define the two long exact sequences; we therefore get
(by choosing appropriate chain homotopy inverses) a commutative
diagram relating these short exact sequences, and hence a morphism
between the associated long exact sequences in homology. Taking the
colimit of these over K and L as in the proof of Lemma 11.6.2, we
obtain the required commutative diagram of long exact sequences.

Since the open sets U \ L, V \ K, U ∩V cover M, by locality we can
represent the homology class µM

U∪V by a sum

µ̄M
U∪V = αU\L + αV\K + αU∩V

where αU\L is a chain in U \ L, αV\K is a chain in V \ K, and αU∩V

is a chain in U ∩ V. Then the chain µ̄K∩L := αU∩V represents µU∩V
K∩L

since the other two chains lie in the complement of K ∩ L and hence
vanish in Hn(M|K ∩ L) ∼= Hn(U ∩V|K ∩ L). Similarly, µ̄K := αU\L +

αU∩V represents µU
K and µ̄L := αV\K + αU∩V represents µV

L . To prove
commutativity in the left square we must show that for ξ a cochain in
S•(M|K ∩ L), we have ξ ⌢ µ̄K∩L = ξ ⌢ µ̄K in S•(U; R). This is true
because by definition ξ vanishes on chains outside K ∩ L. Similarly,
we have ξ ⌢ µ̄K∩L = ξ ⌢ µ̄L in S•(V; R).

To prove the right square commutes, we need to check that for
(ϕ, ψ) ∈ S•(M|K; R)⊕ S•(M|L; R), we have

(ϕ− ψ) ⌢ µ̄K∪L = ϕ ⌢ µ̄K − ψ ⌢ µ̄L.

This is true because

ϕ ⌢ µ̄K∪L = ϕ ⌢ (µ̄K + αV\K) = ϕ ⌢ µ̄K

since ϕ vanishes on chains outside K, such as αV\K, and similarly for
ψ.

Corollary 11.6.5. Let M be an R-oriented n-manifold. If M is the union of
open subsets U and V, and if DU , DV , DU∩V are isomorphisms, then so is
DM.
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Proof. This is immediate from Proposition 11.6.4 and the 5-Lemma.

Corollary 11.6.6. Let M be an R-oriented n-manifold. If M is the union of
a sequence of open sets U1 ⊆ U2 ⊆ · · · and DUi is an isomorphism for each
i = 1, 2, . . ., then DM is an isomorphism.

For the proof we need the following observation:

Lemma 11.6.7. Suppose a topological space X is the union of subspaces Xi,
i ∈ I, where I is a filtered partially ordered set, such that for every compact
set in X there is some Xi that contains it. Then the natural map

colimi∈I H∗(Xi; M)→ H∗(X; M)

is an isomorphism for every M.

Proof. To see the map is surjective, represent a class [α] ∈ Hm(X; M)

by α ∈ Sm(X; M); the images of the simplices in the linear combina-
tion α give a compact subset of X, hence α is in the image of Sm(Xi; M)

for some i ∈ I. Similarly, if a cycle γ in some Xi is a boundary in
X, then the bounding chain must lie in some Xi′ and since I is fil-
tered there is some i′′ such that i ≤ i′′, i′ ≤ i′′ and hence the image
of γ is a boundary in Sm(Xi′′ ; M), which means γ represents 0 in
colimi∈I H∗(Xi; M). This shows the map is injective.

Proof of Corollary 11.6.6. First we note that by excision we can regard
H∗c (Ui; R) as the colimit of H∗(M|K; R) as K ranges over Cpt(Ui) ⊆
Cpt(M). Since Cpt(Ui) ⊆ Cpt(Ui+1) there is a natural map H∗c (Ui; R)→
H∗c (Ui+1; R). The naturality of (relative) cap products also gives com-
mutative squares

H∗c (Ui; R) H∗c (Ui+1; R)

Hn−∗(Ui; R) Hn−∗(Ui+1; R).

DUi
DUi+1

Every compact subset of M lies in some Ui so if we take the colimit
along these maps we get

colimi H∗c (Ui; R) ∼= H∗c (M; R).

Moreover, through the isomorphism H∗(M; R) ∼= colimi H∗(Ui; R) of
Lemma 11.6.7 and the naturality of cap products the duality map DM

is identified with the map on colimits

colimi DUi : colimi H∗c (Ui; R)→ colimi Hn−∗(Ui; R),

which is therefore an isomorphism.

Now we can complete the proof the theorem:

Proof of Theorem 11.5.18. We first consider subsets U of Rn of the form
U1 ∪ · · · ∪Ur where each Ui is a convex open subset and proceed by
induction on r. If r = 1 then U1 is homeomorphic to Rn and we’re
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done by Lemma 11.6.1. For r > 1 set U′ = U1 ∪ · · · ∪ Ur−1; then
U′ ∩Ur is the union of the r− 1 convex open subsets Ui ∩Ur, i < r,
and so we can apply Corollary 11.6.5 to U′ and Ur to conclude that
DU is an isomorphism.

Next consider an arbitrary open subset U ⊆ Rn. Then we can write
U as a countable union of convex open subsets Ui, i = 1, 2, . . .. Set
Vi =

⋃
j≤i Ui then we know DVi is an isomorphism for every i, and

so Corollary 11.6.6 implies that DU is an isomorphism since U is the
union of the Vi’s.

Now consider a manifold M that can be written as a finite union of
open subsets Ui, i = 1 . . . , r with Ui homeomorphic to an open subset
of Rn, and induct on r. Set U′ = U1 ∪ · · · ∪Ur−1; then U′ ∩Ur is the
union of r − 1 open subsets homeomorphic to open subsets of Rn,
and we can apply Corollary 11.6.5 to U′ and Ur to conclude that DM

is an isomorphism.
Finally, we consider an arbitrary manifold M. Because of our The assumption that M is second-

countable is not really necessary, but if
we drop it we need to make use of trans-
finite induction here (or equivalently
Zorn’s lemma).

assumption that a manifold is second-countable, we can write M
as a countable union of open subsets U1, U2, . . . such that each Ui

is homeomorphic to an open subset of Rn. If we set Vi =
⋃

j≤i Ui

then we know DVi is an isomorphism for every i, so we can apply
Corollary 11.6.6 to conclude that DM is an isomorphism.
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